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“Across their entire 

repertoire, males always 

sound higher pitched, with a 

timbre reminiscent of a 

crying baby, while females 

sound deeper, more rasping 

like a chain smoker with a 

terrible hangover….”  

Magnus Robb (2008) on the calls of the 

Cory’s Shearwater 

Luis Ferreira 
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ABSTRACT 
Nocturnal burrow-nesting seabirds are often left out of population surveys because 

censusing them is logistically challenging. Their cryptic behaviour and preference to nest in 

inaccessible areas on remote oceanic islands make usual seabird monitoring techniques 

unsuitable for estimating their abundance. However with the rapid advancement of 

recording technology, automated acoustic monitoring has been suggested as a method to 

estimate population abundance of nocturnal seabirds. To assess the feasibility and 

challenges of developing this method, we put our four autonomous recording units on four 

different Cory’s Shearwater (Calonectris diomedea) colonies with varying densities in the 

Azores to measure calling rates over their incubation period to see if we could establish a 

robust abundance index. We also examined environmental variables that would bias the 

detected calling rates and tried to correct for them. Although we found that moon light, 

wind speed and date of recording influenced the calling rate, controlling for those variables 

did not produce a robust linear relationship between calling rate and nest abundance. We 

also compared two automatic signal recognition software used to process sound recordings 

and determined that Song Scope was a more suitable program for detecting shearwater 

vocalisations.  
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1. INTRODUCTION 

 

1.1 Acoustic Monitoring of Nocturnal Burrow-nesting Seabirds 

 One of the most devastating threats to seabirds is the introduction of non-native species to 

islands (Jones et al. 2008; Simberloff 2009; Towns et al. 2006). This has resulted in a 

considerable amount of effort put into island restoration projects to remove the threat of 

invasive mammals from endangered seabird colonies (Igual et al. 2006; Pascal et al. 2008; 

Towns 2009).  

Nocturnal and burrow-nesting seabird species such as shearwaters and storm petrels, will 

spend most of their lives at sea, but they need return annually to land to breed. They often 

nest on remote oceanic islands and may lay their eggs in burrows or crevices on steep 

inaccessible cliffs, and only return to their colonies at night (Brooke 2004). These factors 

make it very difficult to quantitatively assess their density or abundance 

Due to the difficulties in monitoring nocturnal burrow-nesting seabirds populations, it is 

hard to determine the efficiency of conservation effort dedicated to them. For island 

restoration projects, we often lack the capacity to measure the pre and post eradication 

population of endangered seabird colonies. Not knowing the community’s response will 

limit the evaluation of the effectiveness of conservation efforts. Therefore there is an 

urgent need to develop robust monitoring techniques that can accurately measure the 

relative abundance of nocturnal nest-burrowing seabirds and help to inform future 

management decisions (Milner-Gulland & Rowcliffe 2007). 

Techniques for monitoring most breeding seabirds have improved over the last few 

decades (Walsh et al. 1995). However the monitoring of nocturnal burrow-nesting seabirds 

still remains a logistically challenging task.  
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Acoustic monitoring is a potential method that could be used to monitor nocturnal burrow-

nesting seabirds. Recording technology has developed rapidly over recent years, and now 

battery operated automated autonomous recording units (ARUs) are commercially 

available and have been used to monitor a diversity of species (Dorcas et al. 2010; 

Thompson et al. 2010). ARUs can be easily deployed in remote and inaccessible sites and 

program to record vocal activity over a specified time periods. The recording data collected 

can then be processed in batches using automatic signal detection software to identify 

species composition or quantify calling rates. 

Nocturnal burrow nesting seabirds such as shearwaters would make good candidates for 

acoustic monitoring since many species vocalise at night when they return to their colony 

(Bretagnolle et al. 2000; Brooke 2004). ARUs have already been used to detecting the 

presence of cryptic seabird species, or providing comparisons across time (Buxton 2010). 

However up to this point, there has not been conclusive evidence on whether acoustic 

monitoring could provide a reliable method of obtaining numbers of breeding pairs of 

seabirds in an area. Therefore before further development of the monitoring system can 

proceed, several important issues need to be considered. 

Firstly, the whole premise of using acoustic monitoring for monitoring seabird abundance 

relies on the assumption that the frequency of calls increases as density increases. 

Establishing a positive robust linear relationship between call rates of birds and nest 

densities surround an ARU is therefore an essential step in determining whether this would 

be an effective monitoring approach for estimating abundance of nocturnal burrow-nesting 

seabirds. 

 

Secondly, obtaining calling rates from the sound data recorded by the ARUs would require 

sophisticated automated signal recognition software that will be able to accurately detect 

nocturnal-burrowing seabird vocalisations from the recordings and quantify their calling 

rates. There are currently two commonly used programs used to analyse sound data. It will 

be necessary to identify the most accurate program, which will then be used constantly 

across various projects and locations. This will ensure that the software detection rate of 
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seabird vocalisation remains consistent and reduces the need for training conservation 

personnel to learn new software. 

 

Thirdly, one of the key processes in increasing the accuracy of an abundance index is to 

identify sources of bias that might influence the estimates derived from this system.  

 

There are two categories of bias that could potentially arise in an acoustic monitoring 

system. This system assumes that the calling rate of individual seabirds remain constant 

under various environments. However, nocturnal burrow-nesting seabirds are known to 

vocalise at different rates depending on environmental and temporal situations 

(Bretagnolle 1990). 

 

A second confounding factor arises when we assume that the level of sound detection of the 

ARUs remain constant throughout their deployment period. However, the transmission of 

sound may vary under different speeds. High wind speeds as well have been shown to 

affect recording quality of microphones. The physical differences between the sites of ARU 

deployment will also have an influence on how propagated sound reaches the ARU’s 

microphone. 

 

Consequently, to improve the precision of an acoustic monitoring system, it is crucial to 

examine the relationship between these biases with recorded calling rate. Only then can 

they be controlled for when building an abundance index.  
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1.2 Aims, Objectives and Hypotheses 

The overall aim of this project is to investigate the feasibility and challenges involved in 

using acoustic monitoring techniques as a means of obtaining accurate estimates of the 

number of breeding pairs of nocturnal burrow-nesting seabirds in a colony. The results of 

the project will be used to help the development of this system, which has the potential to 

be a valuable tool for monitoring conservation efforts of endangered seabird species.  

 

The aim of this project will be achieved through the following objectives and their 

respective hypotheses: 

 
1. To test for a positive linear relationship between call rate and Cory Shearwater nest 

density surrounding the automated recording units (ARUs) after controlling for all 

other nuisance variables. 

 

2. To compare the accuracy of two commonly used automatic signal recognition 

software programs (XBAT and Song Scope) at detecting Cory’s Shearwater 

vocalisations. 

 

 

3. To examine the influence of moonlight, weather conditions and site on the calling 

rates of Cory Shearwater and their effects on the ability of automated recording 

units to detect calling rates.  

 

Biological Hypotheses: 

 

H1 (Moon): Calling rates will be higher when the moon is out longer during the 

night and when a higher proportion of it is illuminated. 
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               H2 (Cloud Cover): Calling rates will be higher when there is more cloud cover.  

 

H3 (Cloud Cover *Moon): The relationship between calling rates and cloud cover 

will depend on the moon intensity because during new moon, cloud cover is not 

expected to affect calling rate, however cloud cover will affect light intensity during 

the full moon.  

 

H4 (Visibility): Calling rates will be higher at lower visibility levels. 

 

H5 (Breeding Season): Calling rates will decrease across the incubation period of 

Cory’s Shearwaters. 

  

 

 

Detectability Hypotheses: 

 

H6 (Wind): ARUs will detect fewer calls as wind speed increases, obscuring calls 

and resulting in a lower calling rate 

 

H7 (Site): The number of calls an ARU detects will change depending on which site 

it is placed on because of the variation in physical site characteristics which will 

impact the range of the ARU at picking up bird calls.  
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1.3 Thesis Structure 

 

Chapter 2 provides a background to this study, demonstrating the need for monitoring 

nocturnal burrow-nesting seabird populations. It then introduces automated acoustic 

monitoring as a potential census technique and raises the potential biases that might arise 

from using calling rate to estimate seabird abundance. It ends a short introduction of the 

study site and species. 

 

Chapter 3 describes the methodology used to collect data in the study and an explanation 

of the methods used to analyse the data.    

 

Chapter 4 presents the results from this study. 

 

Chapter 5 discusses results of the study and their implications on estimating seabird 

abundance, the limitations of this study and provides recommendations for future 

research. 
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2. BACKGROUND  

 

2.1 Seabird population decline and its drivers 

Seabirds are one of the most endangered groups of animals with over 30% of 328 

recognised species classified as threatened or endangered by the IUCN. They are also 

declining at a faster rate globally than any other taxon of birds.  Out at sea, seabirds face a 

range of threats from the global expansion of commercial longline fisheries (Weimerskirch 

et al. 1997), oilspills (Piatt et al. 1990) and decline in foraging fish (Kitaysky et al. 2006). 

However on land, predation by invasive mammals is considered one of the largest threats 

to declining seabird populations (Jones et al. 2008, Simberloff 2009).   

 

Since 1600’s, more than 90% of avian extinction on islands has been linked to predation by 

introduced predators (Steadman 1995). Many seabirds breed on remote oceanic islands. In 

the absence of terrestrial predators on these islands, they have evolved naive life history 

traits such as conspicuous ground nesting habits (Ebbert and Byrd 2002) rendering them 

especially vulnerable to introduced predators. Futhermore, many seabirds are also long-

lived with low reproductive rates, making it difficult to replace predated individuals (Owen 

and Bennett 2002).   Introduced rodents for example, are one of the largest drivers of 

seabird extinction. Rats occur on 90% of island archipelagos where seabirds nest, and will 

prey readily on seabird eggs, chicks and even adults (Jones 2008).  

 

2.2 Invasive Mammal Eradication  

The devastating effects of invasive mammals on seabirds and other endemic island species, 

have spurred the development of techniques to eradicate them and restore island 

ecosystems (Howald 2010). Invasive species control professionals employ techniques such 

as systematically dispensing poisoned bait or trapping and shooting in the case of larger 

mammals (Courchamp 2003). Since then, many successful mammal eradication projects 

have been carried out on islands (Campbell and Donlan 2005). Until 2007, rodents have 

been eradicated form at least 284 islands with more projects underway (Howald 2010). 
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However mammal eradication campaigns are extremely costly, for example rat eradication 

on Anacapa Island, small 3km island off the coast of California cost about US$2 million 

(Donlan and Wilcox 2007).   

 

2.3 Lack of post eradication monitoring on nocturnal burrow-nesting seabirds 

Despite the amount of large amount of effort and resources invested in invasive mammal 

eradication, many of these projects suffer from a common problem: the lack of long-term 

monitoring of native species population recovery after eradication (Davis et al. 2004). 

Often, island eradication “successes” are equated to the elimination of the target invasive 

mammal instead of the initial conservation goal of restoring native ecosystems (Courchamp 

2003).  

Nocturnal burrow-nesting seabirds are a group of seabirds that are hardest hit by invasive 

predators and would have benefitted most from invasive mammal eradication (Jones at el 

2008).  Yet the response of their populations after eradication projects have not been 

monitored due to the high cost and logistical difficult involved in censusing nocturnal 

seabirds (Walsh et al. 1995). The remoteness of their colonies and their secretive 

behaviour make monitoring programs costly and challenging to implement. Hence there is 

an urgent need to develop cost-effective, long-term monitoring protocols for priority 

planning and assessment of conservation initiatives of this highly threatened group of birds 

(EU-Life 2009). 

 

2.4 Current methods used to estimate seabird populations 

 

Seabird monitoring programs have been well established in many countries where colonies 

exist. This has enabled wildlife managers to collect data on seabird population numbers 

and breeding success for effective management and conservation (Steinkamp et al 2003; 

Walsh et al. 1995). As a result, many different standardised survey techniques have been 

developed to estimate population size and establish trends.  
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However, nocturnal burrow-nesting seabirds are a logistically challenging group of birds to 

monitor (Walsh et al, 1995).  This group of seabirds, which include species of shearwaters, 

auklets and storm petrels, only return to their colonies at night and nest in burrows or 

crevices which greatly reduces their visibility. Some species may also nest on steep friable 

cliffs that are inaccessible due to safety concerns. Many species return to breed on remote 

oceanic islands where setting up a field station or campsite for extended monitoring by 

humans would incur large expenses. Hence many of the techniques that are currently 

available for monitoring seabirds are not suitable for surveying nocturnal burrowing 

seabirds. Table 2.1 below describes several of the commonly employed methods and their 

problems when used on nocturnal burrowing seabirds. 

 
Table 1. Common seabird surveying techniques and reasons why they are unsuitable for estimating 
nocturnal burrow-nesting seabirds populations. 

 

Monitoring Method Problem 
Aerial or Boat Surveys  Nocturnal seabirds nest in crevices and only return to 

colony at night, making it impossible to see from a plane 
or boat (Walsh et al. 1995). 
 

Direct Burrow Counts  Labour intensive and costly. Burrows located in 
inaccessible areas making hard to get an accurate 
estimate (Monteiro 1990, Steincamp 2005). 
 

Radar  Expensive, problems with interference by insects. Cannot 
survey inland colonies.  (Reynolds et al. 1997) 
 

Raft Counts (Seabirds often clock 
together on the sea surface forming 
“rafts”. This can counted to provide 
estimate of numbers) 

Raft count numbers show huge variation. 
Not enough understanding about rafting behaviour 
(Bolton 2001). 

 

It is clear that more work needs to be done to develop a monitoring system suitable for 

nocturnal burrowing seabirds. One potential method that is being considered now is using 

acoustic monitoring systems to estimate their abundance. Vocal signals are important for 

sexual advertisement in nocturnal seabirds as it aids them to find mates and form pair 

bonds (Brooke 1978, Storey 1984). Nocturnal seabirds species have an array of distinctive 

and unique vocalizations, and their colonies producing impressively rich soundscapes 
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during the night (Robb et al. 2008).  These characteristics make them good candidates for 

acoustic monitoring techniques.  

2.5 Acoustic Monitoring in Birds 

Birds in particular lend themselves well to acoustic monitoring. Vocalisations are one of 

their primary means of communication, and it is also an easier way to detect them as 

human observers will often hear more birds than they can see (Parker 1991). Two of the 

most efficient monitoring techniques used to assess bird populations (point and transect 

counts) both require the use of passive acoustics (Angehr 2002).  One of the main 

disadvantage of point and transect counts is that they rely on highly trained observers to 

use aural clues to identify species. This results in two main problems. Firstly, the ability to 

sample larger areas is limited by the availability of observers (Hobson 2002). Secondly, 

data comparisons between observers may be biased as the data collected depends on an 

individual’s skill level at recognising birdcalls.  

 

2.6 Automated Acoustic Monitoring 

 

Recording technology however, has been advancing rapidly, and may now provide an 

alternative to using skilled observers for acoustic bird surveying. Recently the use of 

autonomous recording units (ARU)s has become commercially available for bioacoustic 

research. ARUs are self contained recording devices that consists of a microphone, single 

board computer programmed with software that schedules and records data, and a disk 

drive to store it in. These new units are powered by batteries and have the capacity to store 

up to 100GB of data which means they can potentially be deployed for months in remote 

locations (Wildlife Acoustics). Studies have shown that automated recordings may be a 

preferable means of acoustically monitoring birds as it minimizes observer biases, creates 

a permanent record of surveys, and also solves the problem of limited number of observers 

(Celis-Murillo et al. 2009; Haselmayer & Quinn 2000). 
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2.7 Automated sound analysis  

Although the development of ARUs has made it easier to obtain recording of bird 

vocalistions, the recordings themselves need to be analysed. Trained analysts may be used 

to aurally or visually inspect spectrograms to identify and quantify vocalizations. However 

even though they may be the most reliable method of analysis (Charif and Pitzrick 2008), 

given the large amount of acoustic data collected by ARUs in the field, this option would 

require an impractical amount of processing time (Swiston and Mennill 2009). Fortunately, 

complex automated computer signal recognition software has been developed to aid the 

processing of large amounts of acoustic data. This has allowed for gains in sampling size, 

and cost efficiency in bioacoustic research (Agranat 2009). 

 

Automated signal recognition software (ASRS) use a two-step process to conduct analysis 

of acoustic data. The first part involves call feature extraction, which is a method a program 

uses to identify the acoustic features of a sound so that it can be distinguished and 

extracted from other different sounds (i.e. background noise). Some examples of feature 

extraction include directly measuring of vocal parameters (call duration, highest and 

lowest frequency etc.) of a target’s species call (Farnsworth et al. 2004) or corelating 

spectrograms of with a template of a target species call (Swiston and Mennill 2009). More 

examples are given in Table 1.  

 

Depending on what feature extraction methods are employed, a classification technique is 

then used to sort the sound data into biologically relevant information such as identifying 

vocalizations of individual animals, species or populations. Different sound analysis tools 

utilise different feature extraction and classification techniques, and each type fares better 

at detecting different form of bird calls (Figure 1).  
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Figure 1 Spectrogram display of five classes of discrete sound shapes that form the basis of most avian 

vocalizations (Adapted from Brandes 2008). 

 

 
Table 2. Comparing various feature extraction and classification methods used to detect bird 

vocalizations, and the type of bird sounds (Figure 2.1) they specialise in detecting. *For detailed 

description of feature extraction and classification methods, refer to Brandes 2008. 

 

Target Call Type (Based 
on Figure 2) 

Feature Extraction* Classification Method* 

a,b Direct time and frequency 
measure from target calls 
 

Bayesian classifier, 
Euclidian distance 

c Pulse-to-pulse duration Neural networks 
 

c Sound template Minimum cross-
correlation threshold, 
dynamic time warping 
 

e Multi-spectral estimates 
with FFT and related 
functions 
 

Multivariate statistics 

a,b,e Peak frequency contour 
vector 

Bayesian classifier, 
dynamic time warping, 
hidden Markov models, 
neural networks 
 

b,e Cepstral Coefficients Dynamic time warping, 
Gaussian mixture models, 
hidden Markov modes 

 

 

 

(a) Constant Frequency 
(b) Frequency 

Modulated Whistles 
(c) Broadband Pulses 
(d) Broadband with 

Varying Frequency 
(e) Strong Harmonics 
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2.8 Automated Acoustic Monitoring of Nocturnal Seabirds 

 

Although not widely used as a monitoring technique yet, there have been a few studies that 

have started to evaluate the use of automated acoustic monitoring systems to monitor 

seabird populations. Buxton (2010) examined the feasibility of using automated recording 

and call recognition to monitor the recovery of nocturnal burrowing seabird assemblages 

after invasive mammal eradication on the western Aleutian Islands. She recorded and 

analysed vocalizations several species of nocturnal seabirds across several islands and 

concluded that ARUs had huge potential to be powerful and cost effective tools to census 

and monitor nocturnal burrow-nesting seabirds. However, this study only assessed relative 

changes in seabird populations using an index across the different islands.  Estimating 

absolute population abundance from acoustic recording would require the calibration of 

sound recordings in colonies where the population size is known. 

 

In 2011, we deployed ARUs at colonies with known numbers of nesting shearwaters in the 

Atlantic and Pacific Oceans. This project is designed to establish a relationship between the 

number of recorded shearwater vocalisations and the nest density measured in the vicinity 

of automated recording units. The acoustic data streams collected from the ARUs will be 

analysed using ASRS, which will pick out species-specific calls and provide a quantitative 

measurement (number of identified calls per unit time, hereafter ‘calling rate’). The 

objective of the project will be to establish a relationship between call rates recorded and 

the number of breeding pairs around the ARUs, eventually developing a robust calibration 

that will be transferable to other nocturnal-burrowing seabird (MOU 2010). Because 

calling rates of shearwaters are known or expected to vary with a number of 

environmental conditions, exploratory analyses are needed to determine which variables 

must be considered if calling rate is to be used to estimate population size of breeding 

shearwaters. In addition, more in depth evaluation is needed on the automated signal 

recognition software used to determine calling rate. 
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2.9 Examining bias on calling rates 

 

Developing a robust and sensitive index for measuring nocturnal burrow-nesting seabirds 

abundance using calling rates would be require to take into account factors that might bias 

the estimate (Milner-Gulland and Rowcliffe 2007). Unreliable estimates may adversely 

influence management decisions, and result in the implementation of unsuitable 

conservation measures (Brashares and Sam 2005). Therefore it is important to be able to 

identify sources of bias and correct for them when designing monitoring techniques.  

 

There are three main sources of bias that may arise when using ARU recorded calling rates 

to determine the abundance of nocturnal burrow-nesting seabirds. These can be 

categorized into biological variation in call rates of nocturnal seabirds depending on 

moonlight and temporal conditions, varying levels of detection of vocalisations in ASRS due 

background noise and finally, changing rates of detection accuracy between different ASRS 

programs. 

 

 

2.10 Factors affecting calling rates of individual shearwaters 

 

2.10.1Moon light 

One factor that influences vocal activity in nocturnal seabirds is the level of moonlight 

intensity. Vocal activity in nocturnal seabirds is reduced during nights when the moon is 

full (Bourgeois et al. 2008; Bretagnolle et al 2000; Brooke 2004). Mougeot and Bretagnolle 

(2000) have demonstrated that Blue Petrels (Halobaena caerulea) and Thin Billed Prions 

(Pachyptila belcheri) vocalised less on moon light nights, where risks of being predated by 

Brown Skuas (Stercorarius antarcticus) are significantly higher. Nocturnal seabirds are 

extremely vulnerable to predators when they return to their colonies on land and reduced 

calling activity has been thought to be an adaptive avoidance strategy to reduce their 

conspicuousness on moonlit nights  (McNeill et al 1993).  
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Roul (2010) used ARUs to record and Song Scope to analyse Manx Shearwaters vocalistions 

on islands in Newfoundland to test if vocal activity differed during changing moon phases. 

She concluded that vocal activity was inversely related to moon phase. However light levels 

may not only depend on the moon phase of a particular night. The timing of when the moon 

rises and sets will also affect the level of illumination of a colony.  Other studies that 

investigated the effect of illumination on nocturnal seabird breeding activities used a light 

intensity meter (Keitt et al. 2004) or included cloud cover as well as moonlight intensity to 

calculate light levels (Riou & Hamer 2008). Therefore it will be also important to consider 

both moon phase, moon rise and set times, cloud cover and visibility to determine whether 

these factors will influences the calling rate of nocturnal nesting seabirds and how much 

this will bias abundance estimates.  

 

2.10.2 Changing vocal activity across breeding season 

One other biologically linked bias that my affect calling rates could be the changing 

attendance or vocalisation patterns of nocturnal seabirds at their colonies across the 

course of the breeding season.  A study by Harding et al. (2005) noted that attendance at 

colony for crevice nesting Horned Puffins (Fratercula corniculata)changed from lower 

during mid and late incubation to higher attendance during later chick rearing stages. Cory 

Shearwaters (Calonectris diomedea) on Madeira on the other hand, show a regular 

oscillating pattern of attendance that does not seem to be explained by weather variables 

or availability of food (Granadeiro 2009). The work of Bretagnolle et al. (2000) with 

Audobon Shearwaters (Puffinius Iherminieri) on Reunion Island also showed that they 

displayed a seasonal trend in their vocal activity, with more calls during the beginning of 

the season where birds return to breed, compared to the end where chicks are fledging. 

 

Although it is biologically is important not to confuse vocal activity with attendance rates at 

colonies, for the purpose of using calling rates to estimate abundance, this confounding 

factor will not affect our results.  
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2.11 Factors affecting variability of detection rate  

 

2.11.1 Wind Disturbance 

One of the largest challenges that ASRS face when trying to detect bird calls from sound 

data is the disturbance caused by background noise which may obscure sounds of interest 

(Agranat 2009). Wind noise in particular has a tendency to create a constant band of noise 

across a spectrogram. If wind speed is high enough, the noise generated as it blows across 

the microphone will mask the frequency range of nocturnal seabird vocalisations present 

in the recordings. The more background noise there is, the harder it is for ASRS to detect 

calls (Agranat 2009, Buxton 2010). Thus a variation in wind speed may bias the accuracy at 

which ASRS quantifies the calling rate from the recordings.  

 

2.11.2 Site Difference 

The diversity in topography of an ARU may affect sound transmission of calls emitted by 

NBNS as well. For example, the diffusion of sound reverberation transmitted will vary 

depending how dense the vegetation is at the site, and whether it is located on a flat surface 

or a valley (Dawson 2009; Mennill 2006). Background noise between sites also may vary, 

resulting in varying levels of detectability (Lohr et al. 2003). Hence one must consider 

difference in deployment sites and their effect on detected call rates.  

 

 

2.12 Determining suitability of automated recognition signal software (ASRS) 

 

Developing a technique to monitor abundance of nocturnal burrow-nesting seabirds will be 

globally useful for seabird conservationists. However it would require a standardised 

protocol that can be easily transferable between species in different locations and 

personnel conducting the monitoring. Currently Song Scope (Buxton 2010) sold by Wildlife 

Acoustics and Extensible Bioacoustic Tool (XBAT) (A. Borker pers. comm.) developed by 

the Bioacoustics Research Program at Cornell University are two programs that have been 

used to analyse seabird vocalisations. 
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The two software programs use different feature detection methods and classification 

methods and there may yield different results depending on a bird’s call structure as 

shown by above in Table 2.2. Using two different programs will result in inconsistent 

detection rates of calling activity, thus affecting the relationship between calling rate and 

measured nest density. Monitoring methods should be designed to reduce the amount of 

training required by personnel conducting the monitoring (Rodriguez 2003). It would be 

unrealistic to require personnel to learn how to use another ASRS if they were to monitor 

another species of seabird.  ASRS programs themselves are already fairly complex to use 

(pers. obsv.) but the user interface and analysis protocols between xBAT and Song Scope 

are also very different. It would be more practical to select one ASRS to be used across the 

different species. However it is crucial to ensure that the software is accurate enough so 

that this simplification of methodology will not compromise its ability to accurately 

estimate population numbers of nocturnal burrow-nesting seabirds.  

 

 

These are all factors that will affect the establishment of a robust abundance index to 

measure the abundance of nocturnal burrow-nesting seabirds. Thus in the course of 

developing this acoustic monitoring technique, they must taken into account to increase its 

accuracy at estimating abundance. 
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2.13 Study Site 

The Azores are a group of nine volcanic islands located in the middle of the Atlantic Ocean. 

They are located approximately 1500km west of Lisbon and are considered an autonomous 

region of Portugal. Currently all nine islands are populated with numbers ranging from 

150,000 inhabitants on Sao Miguel the largest island to 425 on Corvo, the smallest (INE 

2001).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Global location and map of the nine main islands in the Azores 

The islands of the Azores are important nesting grounds for many seabird species including 

5 species of Procellariiformes, four Charardriiforms and one Pelecaniform (Monteroi et al 

1996). Once home to millions of breeding seabirds, their numbers have drastically declined 

since humans colonised the islands in the late 15th century making them of international 

conservation concern (De Leon et al. 2006). Threats to the seabird population range from 
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human disturbance and exploitation, habitat loss, interaction with fisheries and most 

importantly, predation by introduced mammals (Monteiro et al. 1996). 

The recognition of the Azores as an important nesting ground for seabirds has been 

growing and in 2009 Life EU grant “Safe Island for Seabirds” was awarded to promote 

seabird conservation on the Azores through habitat management and assessing the impact 

of native invasive species (EU-LIFE 2009). One of the main objectives of the project was to 

obtain accurate population numbers of the breeding seabirds of the Azores.   

2.14 Study species 

Cory’s Shearwater (Calonectris diomedea) is a large species of shearwater from the seabird 

family Procellariidae. They nest in the northeast Atlantic and islands in the Mediterranean. 

At their colonies, they nest in cavities which can include a diversity of locations such caves, 

crevices on cliff faces, in burrows under thick vegetation (Catry et al. 2006). Like many 

other seabirds, they are long lived with a life span of over 30 years and have with slow 

reproductive rates, only reaching sexual maturity after 7-9 years and producing one chick a 

year (Thibault et al. 1997). Cory’s Shearwaters like other procellariformes are also highly 

vocal birds producing loud distinct calls, with extreme sexual differences (Robb et al. 

2008).  

 

 

 

Figure 3. Photograph of a cute Cory’s Shearwater (Calonectris 

diomedea) 

Cory’s Shearwaters are currently considered ‘Vulnerable’ in Europe (Tucker et al. 1994), 

with several populations facing decline in numbers. Threats they face include long line 

fisheries (Belda and Sanchez 2001), urban light induced mortality of fledglings (Fontaine et 

al. 2011) and predation by invasive mammals (Thibault 1995). Despite these threats, the 
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demographic parameters and dynamics of Cory Shearwaters in the Azores still remain 

unknown (Fontaine et al. 2011). 
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3. METHODS 

 

3.1 Data Collection 

3.1.1 Settings for the autonomous recording units  

Four SongMeters TM2 from Wildlife Acoustics were deployed to record the nocturnal 

calling activity of shearwaters. These are autonomous recording units (ARU) that can be 

programmed to record at specified times during the day. For the purpose of this study all 

four units were scheduled to record 1 minute of sound every 10 minutes during the period 

30 minutes prior to sunset to 30 minutes after sunrise to capture all possible times at 

which Cory’s Shearwaters may be vocalising. This setting ensures representative sampling 

throughout the entire night, while preserving battery power and limiting the memory 

requirements to store the recorded data and thus forms a useful compromise that has 

proved beneficial in other projects (A. Borker, M. McKown, pers. comm.).  The gain of both 

microphones was held at factory default +42.0dB, with recordings in stereo, without 

compression with the sampling rate set at 16kHz as most seabird calls are below 8kHz.  

 

Each ARU was equipped with 32GB of memory in the form of four 8GB SD cards. The ARUs 

are powered by 4 D size batteries, which on the above recording schedule, should run for 6 

weeks based on the manufacturer’s estimates . However, we encountered significant 

problems with rechargeable NiMH batteries, and Alkaline batteries of certain brands which 

did not provide sufficient power to repeatedly turn the units on and off. The chosen setting 

requires a minimum power level in the battery to turn the units on every 10 min, which is 

not accounted for in the manufacturer’s estimate of recording time. Hence, the units 

frequently ceased recording due to power failure after a fraction of the estimated operating 

time. Data were downloaded from the ARU and batteries changed at least once a month, or 

as close as possible depending on the accessibility of the site.  Only brand new alkaline 

batteries of very high quality were useful to power the units for > 3 weeks. 
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3.1.2 Deployment Sites  

Four different sites with a range of burrow densities were chosen for ARU deployment. The 

ARU’s were placed on the ground in areas that offered protection from high winds to 

reduce background noise and away from objects that could obstruct sound waves from 

reaching the microphones, creating a sound shadow. A wire cage was placed around each 

ARU to prevent grazing animals or rodents from damaging the recording device.  

Four ARUs were deployed on islands around the Azores with two on Corvo (Cancelo do 

Pico and Pau de Acucar) on the 12th of June. One was deployed on the 3rd of June on Faial 

and 1st June 2011 on Vila Franca..  

 

3.1.3 Estimating nest abundance 

To obtain nest density at a deployment site, we counted all the number of occupied 

burrows in a 50m radius around the ARU. Given that Cory’s Shearwaters do not respond to 

playback of vocalisations, burrow occupancy was determined using other evidence of 

occupation (Bolton 2001). If a Cory’s Shearwater was not clearly visible in the burrow, 

signs of occupancy were noted. A burrow was counted as being occupied when two of the 

following were observed: 1.Absence of vegetation or spider web obstructing the entrance 

2. Presence of seabird excrement indicating recent use of burrow 3. Presence of white 

breast feathers 4. Presence of excavated soil indicating recent burrowing activity.  

 

However, there were inaccessible areas within 50m of the ARU. In this situation, we 

excluded these areas from the nest density number as did not take up >10% of the 50m 

radius. On Faial, nest density estimates were largely based on the expert knowledge of a 

researcher who had been monitoring breeding success of the colony and knew the 

numbers of occupied burrows in the area at the time of the study.  

 

3.2 Data Analysis 

3.2.1 Processing sound recordings 

Sound recordings from the ARU were downloaded onto an external hard drive. All the 

recordings are saved in the .wav file format and were analysed using automated signal 

recognition software (ASRS) for automatic call detection and spectrogram visualisation of 
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the sound files. To decide which software programwould be more suitable for shearwater 

acoustic monitoring, we tested the accuracy of two ASRS, XBAT and Song Scope, which are 

currently being used by researchers. 

 

3.2.2  Analysis in XBAT  

XBAT’s automatic call recognition system (developed by Cornell Bioacoustics Lab) uses its 

data template detector tool to extract and classify sounds. The data template detector uses 

a detection template of a target species vocalisation to scan recorded sound streams and 

then identifies sounds that are similar to the template. The detector quantifies acoustic 

similarity by cross co-relating it with the spectrogram of the sound streams, and counts the 

number of positive matches based on whether they exceed a certain correlation threshold, 

which was left at the default of 0.4 for this study. The number of positive matches and their 

location on the sound files are saved and presented in an event log (Clark & Fristrup 2009).  

 

3.2.3 Building a detection template in XBAT  

Cory’s Shearwater calls were recorded by ARUs in the Azores. I visually scanned 

spectrograms of the recordings and selected a sample of a clear and distinct target call (See 

Figure 4) with minimal background interference on the spectrogram to be used as a 

detection template. However we were only able to construct successful templates for the 

male call. Female calls for Cory’s Shearwater are less distinct on a spectrogram and their 

frequency coincides with the frequency of the background noise that is constantly present 

in the spectrograms of the recording. This makes difficult to construct an accurate template 

of their calls.  

 

Figure 4. Selecting detection template for a male Cory’s Shearwater call in XBAT.  
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3.3.4 Analysis in Song Scope: 

Song Scope automatic detection software relies on the generation of a recogniser model (a 

type of classifier). Generating a recogniser requires a collection of “training data”, which is 

a sample of known target vocalisations. To generate a recogniser, Songscope automatically 

runs a signal-detection algorithm based on Hidden Markov Models on the training data 

under set model parameters. The algorithm considers the spectral and temporal 

characteristics of the target vocalisation and the variability that is present in them to 

generate a recogniser (see Agranat 2009 for more details on the algorithm and models 

used to build recognisers). The generated recogniser can then be used to scan longer and 

multiple sound recordings in batches to find and count acoustic matches.  

 

3.2.5 Building a recogniser in Song Scope 

To build a recogniser in Song scope, I selected training data from field recordings from all 

the four deployment sites. I visually scanned spectrograms of the recordings to locate and 

select (“annotate” in Song Scope terminology) (See Figure 5) loud and distinct target 

species calls with minimum background interference. To ensure that the generated 

recogniser encompassed the range of variation in call qualities across the different sites, 

training data was annotated from recordings from all four ARUs. Again, recognisers were 

only generated for the male calls of the Cory’s Shearwater as the quality of the female calls 

were not clear enough to build an accurate recogniser. A total of 16 vocalisations were 

manually annotated from 10 different recordings to be used as training data. 

 

 

Figure 5. Annotating training data to build a male Cory’s Call recogniser on a spectrogram in Song 
Scope. 
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3.3 Comparison of Sound Analysis Software 

 

To evaluate whether Xbat or Song Scope was more suitable for analysing Cory Shearwaters’ 

calls, a comparison of their accuracy at detecting call frequencies was conducted. Accuracy 

was tested using both programs to count the call frequencies of a small subsample of 20 

one-minute recordings. These recordings, obtained from the ARU field recordings, were 

selected to represent a range of calling frequencies to test the software’s accuracy of 

detection over a wide range of call rates. They were also selected from different days, 

weather conditions and sites to examine the software program’s accuracy across a variety 

of conditions.  

 

An analyst reviewed the twenty recordings to obtain a count of the call rates that would be 

closer to the actual call rate of the Cory’s Shearwaters, since manual human observation 

currently still tends to be more accurate than software processing (Charif and Pritznick 

2008). I visually examined the spectrogram of the recording and listened to the recordings 

if visual inspection was not clear, to count the number of calls present in each one-minute 

sample. The number of calls counted by each program was then compared against the 

number I detected using a Pearson’s correlation test to determine which software had a 

better relationship to the actual ‘true’ figure.  

  

3.4 Collection of data for variables in model 

 

3.4.1 Calling rate as a response variable:  

 

Calling Rate is defined as number of calls per minute for each night. 

 

To obtain calling rate, I analysed the sound recordings we had obtained from the four ARUs 

we deployed on the Azores.  The more accurate sound analysis software (as determined 

from the first part of this study) was used to batch process the recordings. The program 

scanned all the one-minute files that were recorded and downloaded from the ARUs in 
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batches at a time. It then matched the recogniser against each of the recordings, and listed 

all the positive matches it found in an output table, giving us the total number of calls 

matched in each one-minute file.  

 

Calling Rate per minute was obtained by using the total number of calls recorded per night, 

with the log of the number of minutes sampled each night as an offset.  
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3.4.2 Predictor variables  

 
Table 3. List of predictor variables used in our model and how they were obtained 

 

Predictor Variables Source 

Site (number of nests at site) 

 

The individual sites on which the ARUs were 

deployed.   

Moonshine  

The intensity of moonlight during the night. 

 

This was defined as the amount of time the 

moon was up during the night calculated using 

moonrise and set times. The amount of time 

was then multiplied by the proportion of the 

moon that was illuminated calculated using 

moon phase information.  

Moon Rise, Moon Set and Moon Phase data 

were obtained from the National Oceanography 

Portal 

(http://www.usno.navy.mil/USNO/astronomic

al-applications/data-services/rs-one-year-

world) 

 

Weather Variables  

- Mean Wind Speed (m/s) 
- Mean Cloud Cover (Eights of the sky) 

- Minimum Visibility (km) 

Weather Underground 

(http://www.wunderground.com).  

Date 

The date when the ARU started recording for the 

night.  

 

http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-year-world
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-year-world
http://www.usno.navy.mil/USNO/astronomical-applications/data-services/rs-one-year-world
http://www.wunderground.com/
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3.5 Statistical Modelling  

All statistical analysis was carried out using R 2.13.0 (The R development core team, 2011).  

 

A full model was first fitted to investigate the various factors that would influence the 

number of calls detected in an automated acoustic monitoring system. This was analysed 

using a generalised linear model(GLM) with a log link function using Detected Calling Rate 

(number of calls per minute) as a response variable.  Predictor variables (Table 3) were 

selected to test each of the hypotheses listed in the introduction, which were determined a 

priori. Using a GLM approach with a Poisson error structure showed the presence of 

overdispersion (residual deviance: 1813764 on 79df). I therefore a used a negative 

binomial GLM (glm.nb function in R) to correct for overdispersion (residual deviance 

203.31 on 79df).  The full model was then simplified into a minimum adequate model by 

removing environmental variables that were not significant in the full model (Crawley 

2005).   
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4. RESULTS 

 

4.1 Nest Density of Deployment Sites and Recording Effort 

Table 1 shows the number of nests counted at each different deployment site. It also notes 

the number of nights of recordings that were downloaded from the ARU units in total. Pau 

de Acucar only had 5 nights of recording as the unit malfunctioned after 5 days. Cancelo do 

Pico’s downloaded sound data could not be processed by the software programs, hence 

only five nights were analysed manually by an analyst. 

Table 4. Number of nests found at each deployment site, and the number of recorded nights used in 

our analysis.  

Deployment Sites 

(Island) 

Number of Nests 

counted in a 50m 

radius around ARU 

Total number of 

nights used in 

statistical analysis 

Faial (Faial) 39 38 

Cancela do Pico (Corvo) 11 5 

Pau de Acucar  (Corvo) 20 5 

Vila Franca (Vila Franca) 60 38 
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 4.2 Accuracy of Automated Signal Recognition Software 

The relationship between the number of Cory’s Shearwater calls Song Scope and XBAT 

detected and the ‘true’ number of calls that I manually detected was assessed with A 

Pearson Correlation Test using a sub sample of 20 one-minute sound recordings. 

For Song Scope, there was a strong positive correlation between the number of calls 

detected by Song Scope and manually (r=0.956, n=20, p<<0.0001; see Figure 6). However, 

was no correlation between the number of calls detected by XBAT (r=-0.22, n=20, p=0.353l; 

see Figure 6). 

 

 

Figure 6. Scatterplots illustrating the relationship between the number of calls detected by Song 

Scope (a) and XBAT (b)  and the number of calls detected by an analyst (n=20). 
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4.3 Summary of minimum adequate model 

Table 5. shows the results of the GLM, demonstrating the relative importance of each of the 

variables in the minimum adequate model on the calling rate. The ARU deployment sites 

and date all showed a positive relationship with the calling rate, although date was only 

comparatively less significant than site. On the other hand, moonshine and mean wind 

speed had significant negative effects on calling rate.  

Table 5. Results of the full GLM (using negative binomial error distribution) conducted to test several 

predictor variables on calling rate.  

 

Predictor Variable Estimate Standard 

Error 

Z value P value 

(Intercept) -2.62600 1.21246 -2.166 0.0030323* 

Site(20) 2.10003 0.43964 4.777 1.78e-06*** 

Site(39) 2.02194 0.36096 5.602 2.12e-08*** 

Site(60) 2.83288 0.37368 7.581 3.43e-14*** 

Moonshine -0.009772 0.02914 -3.354 0.000797*** 

Mean Wind Speed -0.04104 0.01431 -2.868 0.004125** 

Date 0.01227 0.00628 1.955 0.050641 . 

. P<0.1, *P<0.05, **P<0.01, ***P<0.001 
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4.4 Predicted Detected Calling Rate to Nest Abundance Relationship 

To determine if there was a positive linear relationship with detected calling rate and nest 

abundance, I plotted the predicted call rates from the minimum adequate model against 

known abundance with all the significant environmental variables controlled (Figure). To 

provide a comparison, the predicted rates of a site model (only fitted with site as a 

predictor variable) were plotted as well (Figure 7). 

Although the predicted values from the minimum adequate model show a positive trend 

between detected calling rates and nest number (Figure 7a), the relationship is only a 

general overall trend with nest number increasing as call rates increase. The diverging 

trend lines indicate that there is no direct proportional relationship between detected 

calling rate and nest number. The trend lines of the predicted values from the site model  

(Figure 7b) on the other hand, converge more than those of nest number (Figure 7a), 

demonstrating a more proportional relationship between detected calling rate and nest 

number. For example, a doubling in of detected calling rates from lowest density site, 

results close to doubling in nest number Figure 7b. This indicates that when we used the 

minimum adequate model to control for environmental variables, the residual variation 

does not produce an accurate index between detected call rates and nest number. In fact, it 

makes the trend less robust than just looking at site differences.   
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Figure 7. Graphs of predicted detected calling rate from the minimum adequate model (a) and site 

model (b) plotted against known values of calling rate at each site. Confidence intervals were set at 

95% 
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4.5 Summary of support for hypotheses 

Table 6: Support for a priori hypothesis based on results from our model. 

Hypothesis Supported 

Moonlight Intensity Yes 

Cloud Cover No 

Cloud Cover Interaction with Moon 
Intensity 

No 

Visibility No 

Breeding Season Yes 

Wind Yes 

Site Yes 
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 5. DISCUSSION 

 

5.1 The Relationship between Calling Rate and Nest Abundance 

The basis behind using an acoustic monitoring system to estimate abundance relies on the 

assumption that detected calling rates are positively related to nest density (Bart et al. 

1998). Although this study does show a crude positive trend between call rates and nest 

number, I was unable to establish a sensitive and robust relationship between them. The 

predicted relationship that was obtained from the minimum adequate model (Figure 7) did 

not show a linear correlation that would have demonstrated a proportionality between 

calling rate and nest number. This may have been a result of our small and unbalanced 

sample size, with Cancelo do Pico and Pau de Acucar only contributing five days of data to 

the analysis. However, confidence levels indicate that imprecision is also relatively high 

from the Vila Franca site, where 38 days of data were collected. 

Examining the graphs plotted from our models, the site model by chance demonstrated a 

better relationship than when the confounding variables were statistically controlled for. 

This suggests that there were underlying differences between the sites that were not 

accounted for as predicted with the site hypothesis. Examples of site related factors that 

could have affected detected call rates include background noise and topographical 

difference between sites (Dawson 2009; Mennill 2006). Influence of background noise, 

such as wave noise, could be corrected by measuring background noise ratios (in terms of 

frequency range affected in spectrograms) between sites (Thompson et al. 2009). 

Topographical differences however will be harder to quantify.  Ideally, the ARUs should 

have been deployed in a place where there were no sound shadows. However, it was not 

easy to find an obstruction-free area near the colonies, which would have contributed to 

site differences.  

One potential method to control for site difference would be to have four of the ARUs 

placed on one island instead at different colonies with varying densities. However, this 
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does not address the issue of the differences present between sites and islands, and will 

question the potential of using this device in a variety of locations.  

At this point, it is also important to highlight the problem of using nest density as a 

measure of abundance. This assumes that only breeding birds are returning to the colonies 

at night and vocalising. However, prior studies on Manx Shearwaters (Puffinus puffinus) 

show that non-breeders may actually call more than breeders (James 1985). The vocal 

activity pattern of breeders and non-breeders of Cory’s Shearwaters should be investigated 

to determine the difference in rates and controlled for if possible.   

Although a robust proportional relationship between call rates and nest number has been 

shown on tern colonies using automated acoustic monitoring systems (Borker pers. 

comm.), only relative abundance indices have been constructed for nocturnal burrow-

nesting seabirds until now (Buxton 2011). Whereas terns are diurnal and nest 

conspicuously on flat ground (Brunton 1997), nocturnal burrow-nesting seabirds colonies 

are more cryptic and located in a variety of habitats (Catry et al. 2006). This makes it easier 

for researchers to collect information about nesting density at tern colonies. The flatness of 

the colonies also reduces the difference in topography between sites allowing for 

comparison of calling rates less influenced by site related factors.   

5.2 Automated Sound Recording Hardware and Software 

5.2.1 Autonomous Recording Units 

One of the main issues faced in this study was the small sample size of the recordings used 

for analysis (Table 4). This can be explained by a combination of several factors, including 

the high costs of ARUs (US$500), which limited the total number that could be deployed at 

different study sites. Despite their high costs, the devices malfunction or were easily 

damaged on several occasions. Regular weekly checks had to be made to ensure they were 

recording according to schedule, and even then, one had a microphone damaged by a sheep 

and the other broke down and had to be return to the company for repair. This resulted in 

the reduced amount of data obtained from Pau de Acucar and Cancelo do Pico (Table 4). 

Considering the environmental factors such that influence the calling rate detected by these 
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units, a much larger sample would be needed to account for all of them. This would allow 

more precise and accurate relationship to be drawn between calling rate and nest 

abundance. 

The Royal Society for the Protection of Birds (RSPB) is currently exploring the possibility 

constructing similar version of ARUs on their own, which would drive down their cost and 

allow for a larger sampling size. Before we get to that stage, our experience with using 

ARUs for this study has provided us with several insights into simple guidelines that could 

extend their reliability and lifespan: 

 A cage should always be put on the ARU unit to prevent damage from animals such as goats 

and rats. 

 Ensure that the type of battery used is compatible with the unit, i.e. High quality alkaline 

batteries should be used instead of rechargeable batteries, as they are less reliable. 

 Check for loose battery circuit connections before deployment. 

 Insulate the device from humidity and rain, using silicon packets and wrapping up the unit 

with cling film. 

5.2.2 Automated signal recognition software comparison 

A comparison of Song Scope and XBAT’s accuracy clearly indicates that Song Scope is a 

more suitable program for analysing Cory’s Shearwater vocalizations.  

XBAT was selected initially because it had been used successfully to detect calls in other 

animals with similar harmonic structure to shearwaters in their vocalizations, such as 

elephants (Dugal et al. 2010; Thompson et al. 2009). However, it did not perform well. 

XBAT’s low accuracy levels could be attributed to the method the software uses to detect 

calls. Spectrogram cross-correlation feature techniques have been shown to work best with 

broadband pulses in birds (See table 2), whereas Cory’s Shearwater calls are more a 

combination of varying broadband frequencies, with strong harmonics (Robb et al. 2008). 

It is more likely that XBAT’s poor performance in accuracy in this study was a result of the 

complications that we faced while trying to use the software. For instance, although XBAT’S 

website comes with simple instructions on how to utilise the basic tools of the program, it 

does not go into other more complex analytical functions of the software which may have 
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increased its accuracy. For example, there exists the possibility of running multiple 

templates simultaneously. This would have given the detector a higher probability of 

detecting Cory’s Shearwater vocalisations as most birdcalls tend to be vary between 

individuals (Brooks and Falls 1975). However, since instructions on how to use this 

function were not readily available, we were only able to compare the sound data to one 

detection template, preventing us from realising its full potential.  

We were also unable to explain why XBAT detected unusually high calling rates compared 

to Song Scope(Figure 6). Further examination of the data revealed all the high calling rates 

detected come from the Faial deployment site. This suggest the problem might lie with 

factors that affected the recording quality at that site, such as the interference from 

background noise of other birds, wind or waves which may have closely matched the Cory’s 

Shearwater detector template.  

Song Scope on the other hand, uses Cepstral coefficients and Hidden Markov Models to 

build recognisers for call detection (Agranat 2009). This is a more suitable method to 

identify strong harmonics (Brandes 2008), which is one of the characteristics of Cory’s 

Shearwater calls. Song Scope also relies on a series of training templates to build its 

recognisers, allowing for a more flexible recogniser to account for call variation when 

detecting target calls. The increased complexity of detection technology in Song Scope 

makes it more accurate at detecting Cory’s Shearwater and the number of automatically 

detected calls is therefore closer to the actual number found by a human analyst as shown 

by the results. Despite its sophistication, Song Scope still has a simple and user-friendly 

interface. It also comes with a detailed instruction booklet, explaining how all the functions 

on Song Scope work.  

Based on the greatly increased accuracy of Song Scope for detecting Cory’s Shearwater calls 

from the sound recordings downloaded from the ARU, we would recommend Song Scope 

be used for future analysis of calling rates to ensure consistency when processing recorded 

seabird vocalisations across different studies. 

This study primarily focused on evaluating of Song Scope and XBAT’s accuracy at detecting 

calls when used by an inexperienced first-time user. Users more experienced with the 
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functions of each programs may derive different results than our study. For example, Charif 

and Pritzrick (2008) developed their own algorithm in XBAT for selecting a series of 

templates that would increase chances of detection. Provided with a similar algorithm 

XBAT could have performed substantially better at detecting Cory’s Shearwater calls. 

Communication with other seabird researchers who use XBAT for bioacoustics analysis 

revealed a high level of proficiency with the software. Even though they required 

substantial amount of training and practice, has allowed them to construct sensitive and 

accurate templates (Borker, pers comm). 

Apart from the accuracy, other aspects of automated signal recognition software programs 

also need to be considered before the software can be employed as routinely as part of 

species monitoring system.  The table below summarises our experience working with 

both 
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Table 7. Comparison of qualities of XBAT and Song Scope that will be important for use as in a 

monitoring system.  

 XBAT Song Scope 

Cost Free but requires Matlab Platform 

which costs about$400-$1000 

 

$600 per installation 

Installation 

and 

Compatibility  

Complicated installation process for 

latest version of software. 

Computability issues of Matlab 

Versions and MacOS. 

 

Simple click to install. Works well on 

both MacOS and Windows.  

User 

Experience 

Simple interface, fairly easy to 

understand basic tools. More 

documentation needed for 

complicated tools. 

 

Simple but professional looking user 

interface, all features explained in user 

manual. 

Support Active user group, but responses to 

answers tend to be erratic. 

Active user forum, with quick responses 

from Wildlife Acoustics Staff. Help line 

also available Mon-Friday in the US. 

Provided one to one assistance with 

building recognisers. 

 

Extensibility  Open source programs allow for 

added features using Matlab code. 

But this requires prior knowledge of 

Matlab programming language. 

Closed source. Any changes to program 

will only appear in new version. 

  

5.3 Environmental influences on detected calling rates  

5.3.1 Biological Bias 

Moonlight Intensity 

Moonshine showed a significant negative relationship on detected calling rates, as was 

predicted by our moon hypotheses. However, visibility, cloud cover and the interaction 

between cloud cover and moonlight were not significant and were removed from the 

original full model. This may indicate that the strong influence of the moonlight overrides 

any other influencing factors. These results are biologically significant, confirming the 

prevailing view that moonlight does affect vocal activity of nocturnal burrow nesting 
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seabirds (Bourgeois et al. 2008; Bretagnolle et al. 2000; Brooke 2004). As a result, they 

should be controlled for when estimating detected call. Depending on how variable the 

other confounding factors are, one way to control for moonshine is may be to only record 

on new moon nights and a few days before or after, when moonlight is at a minimum to 

reduce the moonlight bias.  

Date 

Although significant, date seemed to only have a minor effect on the call rate over the 

sampling period. However, the 38-day range only encompassed the incubation period of 

the Cory’s Shearwater (Granadeiro 1991). The slight increase as the incubation period 

approached the hatching date may suggest that rates could potentially change as the 

breeding cycle progresses. This has implications for selecting which period of the cycle an 

ARU should be deployed at a site. It is crucial that future experimental designs on calling 

rates include the whole breeding period to control for any bias in changing calling rates as 

the breeding season changes.   

5.3.2 Detection level bias 

Wind 

Regarding the question of how the detection rate the ARUs and Song Scope is influenced by 

wind speed, our model provides evidence that increased wind speed negatively affected the 

calling rate detected. This corresponds to prior work investigating the negative effects 

wind speed had on call quality (Agranat 2009; Buxton 2010). A more detailed analysis of 

wind speed’s effect on the detectability of Song Scope could be conducted by looking at 

how the ratio of ‘true’ calls to calls detected by Song Scope changes as wind speed 

increases. This can be achieved with a simple experiment of playing recordings of Cory’s 

Shearwater vocalisations at fixed distances from the ARU under different wind speeds. The 

change in recognition rate across varying wind speeds can then be factored into abundance 

estimates.  
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5.4 Limitations of the Study 

5.4.1 Data Collection and Experimental Design Limitations 

The methodology used in this study to count the number of burrows in a 50m radius 

around an ARU is imprecise, and as a result may have affected the accuracy of our data. 

Instead of using occupancy signs to determine if a burrow had been occupied, accuracy 

would have been improved through the use of a burrowscope (video camera on a flexible 

tube) if funding had been available (Lyver et al 1998). Inaccuracies also occurred when we 

did not include nests in our count when they were located in inaccessible areas around the 

50m radius of the ARU. Future test deployment sites should be completely accessible if 

possible. If not, employing systematic sampling techniques on inaccessible areas 

(Steinkamp et al. 2005, Wolfaard and Philips 2011) or using density values instead of total 

abundance to exclude them entirely will be preferable.    

One other limitation in our methodology was the decision to use 50m as a radius to 

measure nest density around the ARU, where we assumed that 50m was the effective 

detection radius of the unit. However, this needs to be tested by a calibration exercise using 

playbacks of Cory’s Shearwater vocalisations from speakers at various intervals surround 

the ARU, and under different wind conditions, to determine its effective detection radius. 

Following this, nests that fall outside the detection radius, could be excluded, providing a 

more accurate estimation in nest numbers.  

One of the issues that plagues the use of acoustic monitoring to estimate abundance is that 

there might be social facilitation of calling rates, where an increased number of seabirds 

may result in increased instances of aggressive interaction causing them to call more 

(Mackin 2005). Behavioural studies could be used to identify if this applies to shearwaters. 

Although this it was not apparent in our results, one could test a wider range of nest 

abundance numbers and their detected calling rates to determine if the relationship 

accelerates as numbers increase. If an increase in the interaction rates between Cory’s 

Shearwaters did generate louder and higher number of actual calling rates this may result 

in an overestimation of abundance of populations if not accounted for.   
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5.4.2 Data Analysis Limitations 

Analysing calling rates on a nightly scale may simply not be a fine enough temporal 

resolution for the purpose of this study since many different variables, especially weather 

conditions and even calling frequency of the shearwaters can vary throughout the night 

(Bretagnolle 1990; Granadeiro 2000). It would create more meaningful predictor variables 

as well. For example using daily cloud cover or wind speed may notbe representative of the 

actual weather conditions during the recording periods since these weather variables can 

vary extensively during the day and it would reduce accuracy if we used their mean values.  

The ARUs recorded sound data consistently one minute out of every ten throughout the 

night, giving us enough resolution if we intend to sample by an hourly instead of nightly 

rate. The limiting factor however, is the availability of weather data on a finer time scale. 

For this study, we were only able to get detailed hourly weather through the day for the 

site on Vila Franca. This also poses a potential limitation for using acoustic monitoring 

techniques on remote islands without weather stations where it may be impossible to 

obtain detailed weather data. 

5.5 Implications for the use of Automated Acoustic Monitoring Systems for Nocturnal 

Seabirds and directions for Future Research 

Despite not establishing a clear linear robust index of detected calling rate to abundance, 

this study still demonstrates a positive relationship between calling rates and nest 

numbers. Even if the eventual index developed does not have high levels of precision, 

automated acoustic monitoring may still be the most cost effective technique to detect 

abundance changes and provide information on population parameters in nocturnal 

seabird populations. The last acoustic survey conducted on petrels and shearwaters in the 

Azores required 300 man-hours of listening (Monteiro et al. 1999), which could have been 

more effectively achieved with setting out ARUs. Current methods are similarly imprecise 

or require large inputs of manpower and resources (Table1). Hence we should invest more 

effort to increase testing on larger range of densities, and investigating whether site 

differences can be accounted for and improving the accuracy of the index in the future. 
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With regards to the hardware and software used for this monitoring system, decreased 

cost and increased reliability would help to greatly accelerate the process of developing a 

robust acoustic monitoring technique. More work is also needed to investigate the 

procedures used to create recognisers or data templates in this software. There is no fixed 

protocol for their construction, and the manner that a recogniser is built will greatly affect 

its detection rate. There should also be consideration to construct a global library of sample 

vocalisations from nocturnal nesting seabirds with clear and distinct vocalisations that 

would aid the recogniser building process (Agranat 2009).  

 The results of the nest abundance and calling rate relationships obtained from the ARU 

units deployed in the Pacific on other species of shearwaters (MOU 2010) will also provide 

a relevant comparison to this study. This will determine if the techniques developed are not 

just limited to Cory’s Shearwaters but transferable to other shearwater species as well. 

Eventually, expansion to other threatened nocturnal burrowing seabird species such as 

petrels and alcids in different locations may be possible.  These results will allow for 

adjustments in monitoring protocols to account for the variance of vocalisation patterns in 

different species under different weather conditions ensuring that it will be globally 

applicable.  

Ultimately if the accuracy and precision of automated acoustic monitoring systems can 

further be developed, it would be a novel powerful and cost-effective monitoring tool that 

in conjunction with other traditional methods will strengthen our monitoring efforts of 

nocturnal burrow-nesting seabirds on remote oceanic islands. This will drive down the 

costs of long term monitoring of seabird populations on oceanic islands and play an 

important role in facilitating long-term assessment of seabird community response to 

mammal eradications from islands. This in turn will inform future management decisions 

on seabird conservation. 

The use of this automated acoustic monitoring system may also have an added benefit for 

conservation in the form of a rare species detection program that can be integrated within 

it. The large amount of data collected throughout the course of getting reliable detected call 

rates provides an opportunity for the detection of rarer species that may also be present in 
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the colony. For example, although Cory’s Shearwater was the study species in this study, I 

managed to occasionally detect calls of the less common Manx Shearwater when manually 

listening to the sound streams. If recognisers can be developed for rarer species, the sound 

data can easily be batch processed to detect their calls. This will be useful for detecting the 

post-eradication recolonisation of islands by rarer species (Buxton 2010).  

In terms of other possible directions that automated acoustic monitoring could pursue, it 

may be useful to assess the feasibility of censusing nocturnal burrow-nesting seabirds 

based on their vocal signature. This has been demonstrated by Delport (2002), who 

managed to use the unique characteristics of African Wood Owls calls to estimate adult 

turnover rates. Nocturnal seabirds have also been shown to have individually distinct calls 

(Brooke 1978), hence making them suitable candidates for this level of identification. 

Acoustic data processing has become more efficient and accurate over time so it may soon 

be possible to build an abundance estimate at the individual level.  
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