2 Estimation of the Number and Biomass of Sharks
represented in the Hong Kong Fin Trade

2.1 Overview and Purpose

Much of the current concern regarding the sust&natilization of shark resources
centres on the practice of finning and the roléhefshark fin trade in driving shark
mortality. In the absence of extensive and refiapecies-specific shark catch statistics
(see Chapter 1), market data can be used to daksessmbers of sharks represented by
traded quantities of shark fin, and to identify greportions of various types of fins in
trade. Estimates of shark numbers or biomass getefrom fin trade-based studies can
also provide useful reference points against wtoatvaluate reported shark catch rates.
In these ways, shark fin market data can contritutebetter understanding of shark
exploitation rates and provide useful insights i@ current pressures facing world shark
populations. Once developed, similar methods tsamlze applied to other marine or

wildlife species of concern.

This chapter describes a probabilistic approaatata-filling (imputation) and modelling
shark fin trade data and demonstrates how thisoaphprcan be used to derive estimates
of total traded fin weights, as well as shark nuralzad biomass. The chapter begins
with a description of Hong Kong auction recordsethiiorm the basis for this study.

Since some of the records provide incomplete in&ion, the first step in the analysis is
to apply imputation methods to generate missing datl simulate a complete data set for
all observed auctions (Model A). A second impuatattep uses the completed auction
records to estimate traded weights of shark firalatther, unobserved, auctions (Model
B). Results are tallied to form a comprehensiwerg of traded weights in each of

eleven studied market categories for a one-yeamgheA third step applies empirical and
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literature-based conversion factors to translatge weights into equivalent numbers
and whole weights of sharks (Model C). The estamgenerated in this chapter are
combined with molecular genetic testing result€apter 3 to produce estimates of
traded weight, number and biomass that are speacifiwividual taxa. In Chapter 4, the
estimates produced here for the Hong Kong auctametare extrapolated to the global

trade, and the implications for shark populatiomsdiscussed.

2.2 Description and Exploratory Analysis of Hong Kong Auction

Data

2.2.1 Description of Hong Kong Auction Data

The trade in unprocessed shark fins through HonmggKollows one of two pathways:
imported fins may be sold by Hong Kong wholesatersepresentatives of Mainland
China-based processing factories under privateactst or fins may be offered for sale
at Hong Kong auctions. The proportion of fins &rotd rather than sold privately in
Hong Kong is unknown even to traders themselvessandt available from any existing
data source. Auctions are organized by the Homggk®hark Fin Merchant's
Association and usually held year-round, six dagmsvpeek, at one of 16 trading
warehouses run by participating dealers. Generatily one auction is held per day,
although on occasion there are two auctions heidexitively on one day. High-volume
traders may auction as frequently as once per welgdreas low-volume traders may
only auction a few times per year. The auctioredale is known only to association

members and auctions are generally closed to thiicpu was able to attend 17 auctions
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between December 2000 and March 20f1id to understand how the system operates.

At each auction, lists of lots to be bid upon astributed to each attendee (Figure 2.1).

Figure 2.1 Example of Hong Kong shark fin auction sheet shgvwd8 lots. ‘Price’ is in units of
100 catties (1 catty = 604.79 g). ‘Bags’ is the benmof burlap or plastic sacks in the
lot. ‘Weight' is the total weight of the lot in ttees.

As it is important for buyers to ensure that aikfivithin a lot will produce a similar
grade product, the veracity of the lot descriptiareschecked by potential buyers when

the bags comprising the lot are opened onto tlee flor inspection. These records are

1 On 16 March 2001, in response to a shark conservaampaign launched that week in Hong
Kong, | was expelled from the daily auction andredrfrom attending any further auctions.
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annotated after the auction by the Shark Fin TMdrichants Association secretary to
show the total weight of the lot and the officiallg price, but these annotated records
are circulated only to a select group of tradémsas able to obtain 148 annotated auction
records from a confidential source and to trandat&digitize 10,669 lot records

spanning the period 13 October 1999 to 23 Febr2@dy.

The auction records describe shark type using t@éthinese names or combinations of
names. These names were Romanized using the iystem employed by the United
Nations to transcribe Chinese for the Latin alphal@ased on the frequency of
occurrence in the auction records, and on theahiéity of molecular genetic primers for
the analysis described in Chapter 3 (see Table @8dyen Chinese trade names for sharks
were selected for study (Table 2.1). These stullgete categories in total comprised
approximately 50% of the lots. Other Chinese traaime categories were entered, but
then grouped into an ‘other’ category for analydiable 2.1 lists the most commonly
auctioned (>1% of all lots) ‘other’ shark types andvides available information on their

potential taxonomic identity.

Most lot descriptions also contained a referendbedin position. The most common fin

positions recorded were dorsal (~ ‘zhi’), pectoral ( — ‘pian’), and lower caudal ( —
‘gou’); other less common fin positions includegeapcaudal or whole tail ( — ‘mao’),
anal, pelvic or second dorsal (— ‘bi"), and unspecified ( — ‘chi’). After initial data

entry of fin position details, lots were coded alg dorsal, pectoral, lower caudal or
other. Lot descriptions also usually describedsike of the fins being offered, and
sometimes used the term  (‘jin shan’), the Chinese name for San Francisgold
mountain’) to indicate that the fin was well-cutidinee of any attached muscle tissue that

could cause spoilage. Fin sizes were specifiedinvél qualitative system which operates
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Table 2.1 Chinese character and Romanized trade names fide tyipe and the proportion of lots

described using these names.

Chinese | Pinyin Percent of Total Taxonomic ldentity Selected for
Name Romanization | Number of Lots Modelling
(n=10,669) Study?
Described Using
this Name (%)
Ya Jian (YJ) 13.4 see Table 3.2 Yes
Qing Lian 3.0 Yes
(QL)
Wu Yang 8.8 Yes
(WY)
Hai Hu (HH) 1.7 Yes
Bai Qing (BQ) | 2.4 Yes
Ruan Sha (RS) 0.4 Yes
Chun Chi (CC)| 8.7 Yes
Gu Pian (GP) | 1.9 Yes
Wu Gu (WG) | 2.5 Yes
Sha Qing (SQ)| 2.6 Yes
Liu Qiu (LQ) 4.1 Yes
Shenme Chi 26.1 lit. ‘mixed’ fins; a label for | No
unidentified fins
Ke Wei Qing 12.8 a label for blacktip fins; No
potentially many shark
species included
Qun 3.1 believed to refer to No
guitarfish
Zhen Zhu 2.1 lit. ‘pearl’, a dorso- No
ventrally flattened shark (o
fish) with bubble-like skin
surface
Bai Chan 1.0 lit. ‘white cicada’; fin No
resembles the shape of a
butterfly wing

on a relative scale using approximately 15 categdrom small ( — ‘xiao’) to triple

supreme (- ‘san ding’). For example, a ‘san ding’ dorsalfould not be the same

length as a ‘san ding’ pectoral fin, since pectfira are usually longer than dorsal fins.
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Similarly, a ‘san ding’ pectoral fin for one shagpe might be shorter or longer than a
‘san ding’ fin for another shark type (e.g. bluaris and threshers have considerably
longer pectoral fins). Once the Chinese sizeshie@eh digitized, size data were recoded
into six numerical classes as follows: 1) ‘xiasm@ll) and ; 2) ‘zhong’

(medium) and ; 3) ‘da’ (large) and ; 4) ‘te’ (special) and ;5)

‘chao’ (super) v and ; and 6) ‘ding’ (supreme) and

Chinese fin sizes were recoded and grouped betagiseappeared to be minor and
variable differences between some of the adjoinatggories, and organizing sizes into a

smaller number of categories by the key charaeteose provided a clearer basis for

assigning actual lengths in centimetres (see TaBle

Some of the auction records did not contain a ceteet of data for each lot. Lots for
which shark type was not specified were recordedthsr’; missing fin position
information also necessitated recording ‘other’fiomposition. The ‘other’ designation
therefore was used instead of a blank to recorgiagence of fins of unknown shark
type or fin position that were still intended toumed in the modelling. In contrast, if size
information was not available, the fields were dirpft blank indicating that size
information would be excluded from the analysidl @uction records contained data on
the number of bags in each lot, but a number afrds; particularly from certain traders,

did not contain the annotated information on ttaaiveight or price.

In order to understand what proportion of all amtsi held during this period were
represented in the available records, an auctimdar was compiled from October

1999 through March 2001 from a second confidestarcé. This calendar dataset

2| compiled the auction calendar by examining a plete collection of photocopied auction
records. This set matched my subset of auctioordsdhereby cross-validating the two sources.
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provides the date and the name of the trading himussach auction held during the
18 month period, and reveals there were 513 aiwgctioall (Table 2.2). The available

auction records therefore represent nearly 29% afiations.

Table 2.2 Traders holding auctions between 1 October 19984dndarch 2002. Trader name
abbreviations are based on Romanized spelling ligélte traders themselves
(Cantonese phonetics). The last column indicatestier lot weights are provided by

the trader on the available auction records.

Trader Name Number of Number of Total Number of | Annotated
Observed Unobserved Auctions Held Lot Weights?
Auctions (n=148) | Auctions (n=365) | (n=513)

CH 8 10 18 Yes

HY 2 4 6 Yes

KC 35 112 147 Yes

KCL 1 2 3 Yes

KL 2 4 6 Yes

LT 5 15 20 Yes

MT 2 6 8 No

SFC 13 21 34 Yes

SH 7 11 18 Yes

SS 6 20 26 Yes

SY 18 35 53 Yes

TH 16 31 47 Usually

TL 13 27 40 Yes

TS 1 4 5 Yes

TT 1 10 11 Yes

YT 18 53 71 No

2.2.2 Exploratory Data Analysis

Exploratory analysis of the auction data set wamlooted to identify potential functional
relationships between variables and assist in fatimg appropriate models. Since the
variable of interest was lot weight, and the mdssely related variable was number of

bags in the lots, data were plotted to illustrag1d", 50" and 98' percentiles of lot

weights against the number of bags in the lot (fedu2a). Observed higher variability
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in lot weight at higher numbers of bags was redweleen weight data were transformed

using the natural logarithm (Figure 2.2b).
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Figure 2.2 Plots of observed lot weight a) untransformed anamsformed by natural logarithm
against the number of bags per lot. Outliers Hmen removed from a) for illustration

purposes but values are annotated for reference.

The natural logarithm transformation was also aapin further plotting of lot weight in

catties against trader, shark type, fin positiomsize and date (Figure 2.3).
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Figure 2.3 Plots of 18 ( ), 50" ( ) and 98 ( ) percentiles of observed lot weight transformed by

natural logarithm against potential covariates.
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These plots reveal that lot weight does not vaity fin size and date, but trader, shark
type and fin position factors should be taken extoount when estimating lot weight.

The patterns in lot weight by trader are believedrise from differing degrees of sorting
such that traders who sort fins into a large nunatbeategories would have smaller lot
weights. Patterns in weight by shark type mayertftelative abundance: traders claim
that Ya Jian fins are common (Parry-Jones 1996}kiadnay explain why Ya Jian and
other abundant shark types, when grouped togetheafe at auction, form larger lots.
Patterns in fin position can be explained by tlet faat each shark produces two pectoral
fins, but only one dorsal or caudal, and thus pattot weights would be expected to be
higher. Potential interactions between factorsugh not shown in Figure 2.3, were

examined and incorporated where appropriate imtbeelling described below.

2.3 Modelling Objectives and Selection of Methods

The objective of the modelling exercise descrilvethis chapter is to use available Hong
Kong auction records containing information on &hgipe, fin position and fin size of
traded fins to estimate the number and biomashkarks represented in the Hong Kong
auctions. A complete set of Hong Kong auction résavould allow the shark fin market
to be characterized at a level of detail neveripresly achieved. However, the available
auction data set is missing key data on lot weifgitsome records, and in total
represents only 29% of all auctions conducted duitie study period. Modelling of
available records must address both of these datécemings in order to produce a

complete characterization of traded quantities.

Three models were envisaged (Figure 2.4). Mode$és the relationship between the

number of bags in the lot and the lot weight farsd records where both data were
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disclosed, to predict the lot weight for recordattbnly revealed the number of bags in
the lot. These results provide a complete seatd tbr all observed auctions for each
shark type-fin position combination. Model B usies traded weight for each shark type-
fin position combination in each observed auctiaol(ding those supplied by Model A)
as the basis for predicting analogous traded weightinobserved auctions. Model C
sums the observed (Model A) and predicted (Modedig}tion weights for each shark

type-fin position combination and converts thenmtinber, and whole weight, of sharks.

The simplest approach to this problem would invalakeulating the means for each
shark type-fin position combination and using therfill all of the missing records. This
approach, however, would not account for uncesantvariability in the data since the
distribution of each shark type-fin position condtion’s data would be reduced to a
single mean. Furthermore, this mean would onlgrbenbiased estimate if the sample
size was sufficiently high, there were no interaasiin the data, and the sampling design
was balanced. Since the same mean would be usedteely for all unobserved
auctions, it would be difficult to calculate a mawgful confidence interval around the
resulting sum of observed and predicted values, limiting the interpretation and value

of this estimate.

A more sophisticated approach would involve theafdgootstrapping techniques to
estimate parameters of interest, such as meansoafidence intervals (Haddon 2001).
This technique resamples with replacement frons#maple population and is
advantageous because it can produce unbiased estionfaonfidence intervals even
when the underlying distribution is non-normal. oBsirapping can be used for estimating
parameters from sample populations (e.g. fully okskshark type-fin position
combinations) but Monte Carlo methods are necesghen the method requires re-

sampling from probability density functions ratliean empirical data (Haddon 2001).
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Another approach involves Bayesian methods basd&thgas theorem:

P(Xq) *P(q)

o039 (Eq. 2.1)

P(g|x) =

which holds that the probability of a specific valof the parametey given the data

(P(q|X) , i.e. the posterior) is proportional to the prabgbof obtaining the data given
the parameter vaIueP((X|q) ), multiplied by an independent probability for fh@ameter

value (P(q), i.e. the prior), divided by the probability oftaining the datalP(x)).

This probabilistic, or Bayesian, approach has sd\mmeficial features. First, it allows
parameters to be treated as random variables fngrikreown statistical distribution

rather than as fixed values. Bayesian methodsdkpiicitly account for uncertainty in
each step of the statistical modelling (Ellison @09Secondly, the resulting parameter
distribution, called a posterior probability degsitepresents the probability that the value
of the parameter is true rather than the probgwhtobserving data given a specific value
for a parameter, as in frequentist statistics (W2@fz0). Thirdly, although Bayesian
statistics have been criticized for the fact thtcsfication of priors can introduce
unnecessary subjectivity to the analysis (Denn#6),2his concern is less important in
cases such as the shark fin auction records wherdataset is large and detailed, and

uninformative (i.e. diffuse) priors can be usedhwiit constraining the analysis.

The use of Bayesian methods for data imputatiengswerful, but under-utilized, tool

for dealing with missing data. One of the mosteated methods, multiple imputation,
can be implemented in either Bayesian or non-Bayefsirms and involves iteratively
simulating missing observations under a prediatieglel. The results are then combined
to provide a single inference about the paramdtanterest while factoring in uncertainty

due to missing data (Little and Rubin 1987, Rul88d, Zhou et al. 2001).
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The multiple imputation framework involves speaifgitwo components: the pattern of
missing observations and the model for predictiingsmg data points. The pattern of
missing observations may fall within one of thremeral categories, and must be
specified carefully (Heitjan 1997). Data which amnéssing completely at random’
(MCAR) would not be expected to show any patterwben the probability that an item
is missing and any observed values (or the misgihge itself). In fact, if data are
MCAR, multiple imputation is not necessary since asonly the complete records
should give an unbiased estimate of the paramétatesest. Taking the shark fin
auction data as an example, the MCAR pattern ispplicable because the missing lot
weights occur in the records of certain tradersrasicat random. The second pattern of
missing data, entitled ‘missing at random’ (MAR}ists when the probability that the
data are missing is related to an observed paraimet@ot to the missing value itself. In
the shark fin auction example, the data are corsiti® be MAR since the probability
that lot weights are missing is related to tradad not a reflection of a bias against
reporting particularly high or low lot weights. &lthird pattern of missing data is
referred to as ‘non-ignorable’. Missing data avesidered non-ignorable when the
probability of being missing is correlated with tneobserved value of the missing item
itself, for example, all of the missing lot weiglat® large lots for which traders were
hesitant to disclose details. When the paraméterterest is non-ignorable it must be
modelled explicitly so that its value is conditiboa the relevant covariates of interest
(Best et al. 1996a). This study’s missing datbfedd a ‘missing at random’ (MAR)
pattern and thus met the assumptions of many ahtiéple imputation procedures

currently in use (Heitjan 1997).

The second component of the multiple imputatiomfrevork, specification of the model,

was implemented using a Bayesian approach. Sietlhatssing values for missing lot
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weights,W, based on observed lot weightswere given by the predictive distribution

for W givenX:
pw|x)= p{Ww|x,q)plg|X )dg (Eq. 2.2)

where g represents the parameter or parameters govetmenglationship betwealy

andX.

This foundation for the model was then developéd énBayesian hierarchical modelling
framework reflecting the various levels of aggregabr hierarchies (i.e. lot weight,
auction weight, total traded weight over the pebihterest) in the data. Hierarchical
models derive power from the ability to directlyate parameters at lower levels of
aggregation to those at higher levels and therghg the data as well as the data
structure for relationships that inform the modstireation. A Bayesian form of this
model specifies conditional relationships betwearameters based on the hierarchy
inherent in the data (Gelman et al. 1995, Congd@i 2Gill 2002). In the case of the
auction data, a hierarchical model assumes thah#@n traded weight of, for example,
Ya Jian fins in a number of auctions held by alsitigader are drawn from an underlying
distribution of mean Ya Jian weights for that tnad8imilarly, at a higher level of
aggregation, the mean weight of Ya Jian fins aunetioby each trader can also be
assumed to be governed by an underlying distribudfanean Ya Jian weights across
traders. At an even higher level, mean Ya Jiamgktsiacross traders can be thought of

as deriving from a distribution of mean weightsossrall shark types.

Until recently, the application of Bayesian methbds been limited by the
computationally intensive nature of the modelliMgAllister and Kirkwood 1998).
Advances in processor speed, and the developmeuwftefare packages providing

graphic user interfaces for specifying, executind avaluating models, have resulted in a
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recent increase in the application of Bayesian ough Given that these methods are
both accessible and provide high statistical rigauBayesian multiple imputation
hierarchical framework was selected for the modglliData were formatted in Excel
spreadsheets and models were formulated using Wa#B(Bayesian inference Using
Gibbs Sampling) software, version 1.3 and checletaguCODA (Convergence

Diagnostic and Output Analysis) software (http:/fmmwwrc-bsu.cam.ac.uk/bugs).

2.4 Bayesian Imputation of Auction Records (Models A ad B)

2.4.1 Structure of Model A

The purpose of Model A is to predict missing lotigtes from observed numbers of bags
in the lots using posterior predictive distribusaicg. 2.2). Although there were 10,669
individual lot records, in the hierarchical modelrhework the unit of interest was the
weight of all lots for each shark type and fin piosi in a given auction. This total weight
can be summed for all complete records, but musppeoximated for records lacking
weight data. Missing data points can be approaohaly a prediction of the mean lot
weight for each shark type and fin position based@mplete records, multiplied by the
known number of lots, plus a normally distributaddom error term to account for
uncertainty in the value of each of the missingqgutints. However, care is required in
guantifying the uncertainty in the resulting estienaf total weight per auction when the

estimated mean is used as the input data (see helow

In order to predict mean lot weight for incompleteords, available data on lot weight
and number of bags per lot were averaged for eactioa by the twelve shark types
(Table 2.1) and four fin positions. This resulbed ,980 mean lot weights and 1,980

mean number of bags per lot each representingoguemiombination of shark type, fin
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position and auction (Figure 2.4). An additiondB3ncomplete records were described
by shark type, fin position, auction and numbebadgs in the lot, but were lacking any
data on lot weight. Of the 7,104 possible comlbamat of shark type, fin position and
auction, 4,811 were zeros (i.e. no fins observéd@an lot weight plotted against mean
number of bags in the lot for each auction by slygok and fin position was best fit by a

linear relationship of the forny = mx+ b, particularly when the relatively small number

of large lot weights were excluded (Figure 2.5).

800
A
700 s
A
600 Lo N
A A
500 r, -

Mean Lot Weight (catties

Mean Number of Bags per L

Figure 2.5 Plot of mean lot weight against number of bagsi@terEach data point represents a
shark type-fin position combination for which finere observed at a given auction.
Outliers (mean number of bags per lot > 10) have bemoved for presentation only

(i.e. not from the model).

The relationship between mean lot weight and mesnber of bags per lot varied based
on both shark type and fin type (Figure 2.6). Maigation indicated that effect terms for
slope and intercept (i.e. offsets from a base stopkintercept estimated from all data
points) should be specified for each shark typ#noposition in order to inform the

model structure.
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Figure 2.6 Maximum likelihood-based linear trend lines showihg relationship between mean

lot weight and mean number of bags per lot by shar& (a) and fin position (b) based

on data in Figure 2.5 (n=1,980 in each plot; daiats removed for clarity). Shark

type abbreviations follow the conventions in Tablé. Trend lines would in theory

pass through the origin but in this plot they egtéoward the intercept only as far as

supported by the data. Outliers have been remforgatesentation only (i.e. not from

the model). Since slopes and intercepts vary bykstype and fin type, Model A

specifies effects terms for each shark type antifie which account for the offsets

from the base slope and intercept estimated froohash points in aggregate.
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Given the potential effect due to trader illustdaite Figure 2.3, a trader effect on slope
and intercept was also considered for Model A. Ehmv, due to the absence of lot
weight information for all of the records from twbthe traders (Table 2.1), and given
that these two trader’s auctions comprised over 608e missing lot weight values, a
trader effect could not be implemented for theaders and was thus considered

unnecessary in Model A.

Model A uses the following algorithm to predict sirggy mean lot weights for each shark
type-fin position combination:
mean lot weight = ((base slope + shark effect +difect) « mean number of bags)

+ (base intercept + shark effect + fin effect) + (Eq. 2.3)

The normally distributed error term) (was added to the predicted mean lot weight to
account for uncertainty in the regression predictidhese predicted mean lot weights
were then multiplied by the observed number of éftdhat combination in each auction

to provide a total auction weight for the combipati

Total lot weight = mean lot weight (estimated) smhers of lots (observed) (Eq. 2.4)

The base slope, base intercept and effects steufiuiModel A shown in Equation 2.3 was

implemented using a hierarchical joint probabifitpdel and Monte Carlo Markov Chain

integration (Gelman et al. 1995). The model tdakfollowing form:

ol )ols ) s & &b
=P\ PSP sy _Op my, |m,,s Op v lmy s
J j=1 j a=1 ! j J

(Eq. 2.5)
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where, for each shark type-fin position combination

m, is the mean lot weight across all auctions ancetsd
s, is the standard deviation in the lot weight acibauctions and traders,

n , is the vector of mean lot weight for trageacross all auctions,
]

S, isthe standard deviation in mean lot weight fadérj across all auctions (assumed
]

to be constant across traders),
m,, is the vector of observed mean lot weight for trgde auctiona,

N; is the number of sampled traders, and

N,;is the number of auctions for tragewhere the mean lot weight is available.

The integral of Equation 2.5 which gives the pregticnean lot weight for each shark

type-fin position combination for tradgin auctiona, "y given °ja is shown below:

p(rfy 1 )= Py Imy.s, P mim,.s,
P mMy.Sy.S, M, dm,ds,ds,

(Eq. 2.6)

Since weights cannot take negative values, thewdate transformed using the natural
logarithm, and all predicted mean lot weights weaiek-transformed before being
multiplied by the number of lots to produce totalweight. A flowchart of the Model A
algorithm is presented in Figure 2.7, and the ithsgtions and uninformative (diffuse)

priors assigned to each variable are given in Talde
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Figure 2.7 Flowchart showing the derivation and relationsHiptween parameters for Model A.

Large rectangular boxes represent loops. Thinmarindicate that the ‘parent’ node
determines the ‘child’ node in a stochastic manrgold arrows indicate that the

‘child’ node is logical and therefore calculatedrfr the ‘parent’ node. Ovals represent
stochastic nodes (random variables), whereas sewdiingles represent deterministic
nodes, such as data or priors. Priors on stochai®cision nodes are given in Table

2.3 but are not shown here for simplicity of preaéon.
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Table 2.3 Variables used in Model A and their assigned distions and priors. Precision is

calculated as 1/variance. ~dgamma (0.001,0.0@t¢sents a gamma-distributed

random variable with scale of 0.001 and shape@iD.

Variables (total number of Distribution Mean Precision
parameters estimated)
base slope (1) Normal 1 0.001
base intercept (1)
shark effects for slope (3) Normal 0 ~dgamma
shark effect for intercept (4) (0.001,0.001)
fin effect for slope (3)
fin effect for intercept (4)
Mean lot weight (deterministic) Logical = (slope x NA
mean number
of bags) +
intercept
Mean lot weight (stochastic) Normal Mean lot ~dgamma
weight (0.001,0.001)
Total lot weight Logical Mean lot NA
weight

(stochastic) x

number of lots

2.4.2 Execution of and Results for Model A: PredictiéiMissing Lot Weights

Model A initially specified an effect term for eaohthe 12 shark types and each of the 4

fin positions. It was desirable, however, to grtlgse effects to improve the

convergence efficiency of the model and increasestttimation power for those shark

types or fin positions with limited observatioriBo accomplish this, Model A was run

using only shark type effects, probability intes/Bdr each shark type effect were

observed, and shark types were grouped based dar#ties in the intervals. Similar

model runs were undertaken to group fin positidac$ (Figure 2.8).
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Figure 2.8 95% probability intervals for each of the sharkeyynd fin position effects (i.e. offsets

from the base mean represented by zero) for slogéndercept terms in Model A. For

each effect, dots represent medians and linesgeptréhe 95% probability interval.

Numerals above each line represent the final graumpber for each effect. The

abbreviations follow the shark types and fin posis given in Figure 2.6.

All effects were constrained to sum to zero, thenegffects were estimated for all but

the least data-rich of the groups, and this fimalg was assigned an effect such that the

total of all effects would equal zero.

The appropriateness of grouping and reducing tineeun of effects for shark type and

fin type was evaluated by using the model to pteditues for all observed data points

(n=1,980). Posterior predictive p-values (Gelretal, 1995) were then calculated to

guantify where in the posterior predictive disttibn the observed value lies. Those

shark types or fin positions with p-values of lgsmn 0.05, indicating a significant under

prediction by the model, were re-examined and titesly re-grouped, if necessary, to

minimize the number of low p-values across groupbsthus assure that all shark type-fin
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position combinations were accurately predictesly@nder prediction was examined in
the posterior predictive p-values since the lorgofehe negative binomial distribution

makes it easy for the model to be fitted to highltaeight values.

As shown in Figure 2.8, the original twelve shdifie&s for slope were combined into three
groups, and the original twelve shark effects fdelicept were combined into four groups.
Fin position effects for slope were condensed ffoun original groups into three, but for
the intercept effect each fin position retainedits group. Under the final effects
groupings, only 2.5% of the 1,980 p-values werdS@n=49), but roughly half of these 49
values were for shark type Wu Gu across a varietingositions (Table 2.4). The Wu Gu
effects for slope and intercept were variously ciovdh with other slope and intercept
groups, but model convergence proved difficultdbiave (i.e. the distributions of the
various effects became less stable). Wu Gu effeets also estimated separately (i.e. in
their own group) but the total number of under prted p-values remained near n=45 in
each case, thus the addition of an extra paramedetted in an improvement in the Wu Gu
estimation but was accompanied by a worseningediptions for other groups. For these
reasons, the groups shown in Figure 2.8 were etlaas the final groupings. The poor
estimation for Wu Gu may derive from the preserfceeweral species, including at least

one from another genus, in the Wu Gu trade cate@esy Table 3.2).

Table 2.4 Distribution of posterior predictive p-values (Gamet al. 1995) by shark type and fin

position. The abbreviations follow the shark types fin positions in Figure 2.6.

Shark: | YJ |QL |WY |[HH [BQ |RS |CC |GP |WG |SQ | LQ | OT | Total

Fin: D 1 2 7 1 11
cl|1 5 3 1 1 7 1 1 20
P 2 10 1 3 17
0] 2 2

Total | 1 5 4 0 1 0 1 6 24 1 2 4 49
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Diagnostics packaged within CODA (i.e. Geweke, Galrand Rubin, Raftery and
Lewis, Heidelberger and Welch convergence testbaanautocorrelation test (Best et al.
1996b)) were used to evaluate model results. Oritgitive output testing including
monitoring parameters at the beginning and endtdrgially converged chains, and
checking that parameter estimates were identicather or not model results were
thinned (e.g. only every 10result used in the calculation), were also employEhese
methods indicated that Model A converged and wes &f autocorrelation after

approximately 50,000 iterations.

Although Model A’s prior probability distribution@riors) are uninformative (diffuse),
the data consist of 1,980 pairs (mean number of,lragan lot weight per auction) of
points and these exert a strong influence on tlimated slope and intercept parameters
(posterior probability distributions or posteriard)sing an in-built capacity of the
WinBUGS software for multiple imputation of missidgta, mean lot weights were
predicted for the 313 missing values, and these wsed to calculate total weights.
Figure 2.9 illustrates the distribution of totaliglgs per auction for each modelled shark
type that were observed from the auction sheetsrgoud to Model A. Figure 2.10 shows
the distribution of Model A predictions by sharlpéyfor auctions where the total weights

were not recorded.

The total weights predicted by Model A were usethia ways in the remainder of the
imputation algorithm. Firstly, in each iteratiohtbe larger model (Model A + B) they
were stochastically summed and combined with tleknsum of observed total auction
weights (n=1,980) to produce a full set of totattaan weights (n=2,293) for all 148
observed auctions. Secondly, the medians of efitte 813 predicted Model A
distributions were included alongside the obsetv&80 total auction weight values as

input for Model B for effects generation only. $hise of point estimates is contrary to

62



Frequenc

Ya Jian (n=203; zeros=389)

Bai Qing (n=132; zeros=460)

Mi Gu (n=132; zeros=460)

100
80 100 80
80
60 60
60
Iy © 20
2 20 20
0 AR 0 I.. 0 Hl‘l‘l‘.-w‘ —_—
©c o999 9 99 9 9 9 9 o o 9 © g9 9 9
2 8883888¢RK 88 S 8 8 8§ 8 8 © 8 8 8 8 8 8 8
S 28388 &8 S 8 8 § B 8 R
Qing Lian (n=124; zeros=468) Ruan Sha (n=39; zeros=553) Sha Qing (n=139; zeros=453)
80 20 80
60 15 60
20 10 40
20 5 20
NN | T o [
0 -
O 9O © 9O 9O O O 9 9O 9O 9 o (=} o [=3 [=3 o (=}
8 8888 88 8 8 8 & 8§ @8 8 8 8§ ©c 2 9 9 9 9 9 g 9
S 88 3F B8R IS g s 3 g8 888 8 8 8 8
Wu Yang (n=198; zeros=394) Chun Chi (n=216; zeros=376) Liu Qiu (n=145; zeros=447)
120 140 120
100 120 100
" 1% 0
60 s 60
40 I 0 40
20 20 I
o+ iiLinm., ol AAN M., — ® I.
o o 0
REBEERSEEE REe§8EEEE °g 8888688
Hai Hu (n=112; zeros=480) Gu Pian (n=103; zeros=489) Other (n=437; zeros=155)
100 80 120
100
80 0 o
® 60
40
o 0
20 20 20
0 1 o I | | 0
o o o o o o o L A L L O O ©9 © 9 9 9 9 © 9O o
S 8 8 &8 B8 8 © 8 8 8 8 8 8 8 2 8883888 RK 38
S 8 8 § 8 8 R S 28388 &8

Weight in kilograms

Figure 2.9 Histograms showingptal weight per auction by shark type in obsergath sets.

Data points for each shark type represent a mixatiedl fin types. The independent

axis is weight in kilograms; the dependent axiseguency. Zero values, i.e. where

no fins of a given shark type-fin position combioatwere present in a given

auction, have been removed from the plots, buhtimber of zero values is shown

in each heading.
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Figure 2.10 Predictions (posterior probability distributiongy 313 missing total lot weights
produced by Model A. For each missing data pamahged along the dependent
axis), medians are represented by small squarde iirteés represent the 95%

probability interval. Intervals are sorted in astiag order by median in each plot.
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the stochastic nature of the algorithm but was seay because of a requirement in
certain types of Bayesian networks, including WinB&J to represent the network as a
directed acyclic graph and thus avoid cyclic preessn the modelling (Jensen 1996). In
practical terms, such models require clear disbnstbetween deterministic and
stochastic parameters (Congdon 2001). This méamtparameters such as total weight
cannot be stochastically simulated in Model A arehtused in Model B, as if they were
data, to generate other unknown parameters. Sadiewould create a loop in the
Bayesian network and violate the directional fldwhe model. The only option to avoid
using point estimates from Model A in Model B, viagpredict missing auction values in
Model B from only the completely observed auctiated(n=1,980) and use the Model A
results for stochastic summing only. This opticaswejected because it would result in
Model B being unable to estimate effects for tvamlérs who never report lot weights and
who collectively represent 59 of the 513 total aurcd (Table 2.2). Potential
underestimation of uncertainty in the data inputitedel B was addressed by treating
these data as random variables within the likelihinmctions applied in Model B as

discussed below.

2.4.3 Structure of Model B

The purpose of Model B is to predict total auctiegights by shark type and fin position
for all unobserved auctions. The number of unoleskauctions is known, as is the
identity of the trader holding each unobservediandfTable 2.2). As illustrated in the
distribution of total auction weights by shark ty{fégure 2.9), fin position (Figure 2.11),
and trader (Figure 2.12), there is a large spikeabfes at zero, i.e. no fins of a particular
combination auctioned, and a flattened distributidgthh a long tail for the non-zero
values. When the analysis was begun, a chi squaredhess-of-fit test was used to
determine whether the non-zero weight data fitgative binomial distribution (as

given in Hilborn and Mangel (1997)). As the nufothesis that the distribution fits the
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data was not rejected (p>0.975), it was decidddrtoulate Model B on the negative

binomial distribution. Total auction weights wergsumed to vary by shark type and fin

position, as in Model A, but Model B also allows faader effects given that all traders’

data were now complete. Model B produces prediptederior distributions for the

traded weight per auction for all combinations ldirk type (12), fin position (4) and

trading house (16), i.e. 768 combinations in total.
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Figure 2.11 Histograms of total lot weight by fin position witteight in kilograms on the

independent axis and frequency of observationhieniépendent axis. The

number of observed total lot weights is givermbyith the total sample size for

all fin types equal to 1,980. Zero values, i.eevehno fins of a given shark

type-fin position combination were present in aegivauction, have been

removed from the plots, but the number of zeroesiis shown in each heading.

66



L9

‘Buipeay yoes ulusvEl SanjeA 019z JO Jagquinu ay) Inqg ‘siojd ay) wouj

anowpal udaq aney ‘uonane UaAIB e ul Juasald asemruiquod uonisod ul-adAl yleys uaAlb e JoosuglayMm ‘'l ‘sanjeA 0197 '086'T 01 [enba siapen

|[e Jo} 8zis sjdwes [e101 8yl yum ,u, Aq usAifdsonoipald 10) suoieAIasqo JO Jaquuinu ayl Tsemiadap ayl Uo SuolleAIasqo Jo Aousnbal) pue sixe
wapuadapul ayr uo swelboly ul lybiam yum JaperAq ybiem uonone [e10l (A, pPue 1A, Slapen‘y |apolN Aq palaipald o) panlasqo jo swelbolsiH ¢T'z 8inbiq

sweabo|y ul 1ybiopn

T " S T C RN 2 OR OB 5 B o a ¥R 8 5 B o s ® O 5 o 9
8 8 8 8 8 8 8 o S 8 8 8 8 8 8 o € 8 8 8 8 8 8 o s 8 8 &8 8
+ + + = + 10 :ii,i:,i::ii,i::-i 0 -,i,i:::-,ni,,-,i,-,-:::-,-,io g 0
0s 1 os o1 z
T 00T 1 0z 4
T 0sT oot oe 9
002 0ST ov 8
(909=50182:852=U) LA (LG%=50182',9T=u) 11 (y92=50182:2/=U) HS (eg=so1az:gT=U) 10
NN N R e
E 2 gz & 3B § 2 38 8 gz 3 € &£ 528 8 8 &
o o o o o [=} o o o o o o o [=} 4 4 4 4 4 4 4 4
ettt tertert = t 0 L e L | 0 w 0
_H__l_ 1 4 os T ooz
+ oot T ooy T
T o1 + 0ST 009
ST 00z -
(0z=sos8z9z=u) LW (955=504222TZ=U) HL (Szy=s0122166T=U) O3S (S70'T=s0182!5€9=U) DX
. . NN N e e [ boe e e
] 8 g 3 ] ] g &8 8 8 8 & & & 83 8 & 8 & 8 g 5 8 8 &8 8
g & 8 8 8 8 o € 8 8 8 8 8 8 o S 8§ 8 8 8 8 8 o € 88 88 8 D
0 L I o e o o ] 0 ettt ] 0 ettt u
z T 0s 0z
v T ooT o (@)
9 0st 09 st <
(eg=so1dz!gT=U) 11 (9T9=S018Z'8pz=U) AS (091=so18z:08=u) L1 (69=s018z!22=U) AH
~ (=23 o B w N = = = [ [ = = [~ = = =4
s 3 & 8 & 8 o & & N e 9 & 8 g = g & N 2 5 8 8 8 3 & B
S & & & & o o o . S S 38 3 53 53 o g8 8 8 8 8 8 8 o 8 & & & ©6 © © o o
L e - - 0 ettt gt 0
- ‘»f: T o0z S L og
1 ov o1
0z —1 09 ST T oot
08 0¢ 0s1
(Lz=so018z !Tz=U) SL (9,1=50182'2TT=U) SS (T9=souazige=u) Iy (zp2=50182'2pT=U) HD




A number of possible forms of the negative binordiatribution were available to
simulate the total weights. One form, which istigatarly suitable for implementation in
WIinBUGS, assumegi], total auction weight for a given shark type-fiosition
combination in observatianis Poisson distributed with meajfi] (Elliot et al. 2000):
Zi] ~ Po([i]) (Eq. 2.7)

where

[i] is a gamma distributed random variable with spaleametek, and shape parameter
k/mdi]. In this study, occurrences of large mean lagWevalues for [i] (i.e. hundreds
of kilograms) made use of the Poisson distributomputationally intractable.
ThereforeZi] was given a normal distribution with meaand variance as stipulated
by the Poisson distribution. With this structysarameter]i], representing traded fin

weight, takes a negative binomial distribution.

This negative binomial portion of Model B predithe total auction weights when fins
are present, however, a binomial portion of the ehiwinecessary to account for the large
number of zero observations when no fins of thatlskype — fin position are present.

The binomial parametsfi] is based on a probabilifythat fins of the given type are
present. The paramefers, in turn, based og, the summation of a normally distributed
base mean plus additive effects for shark typepdisition and trader type, transformed,

using the logit transformation, to a random vaeatttween 0 and 1.

Another feature of the binomial portion of the miigean interaction term between shark
type and fin position. Based on information gatidewhile attending auctions,
interactions between shark type and fin positionevexpected for some types of fins.
The reason for this is that according to tradegditis of some shark types are similar in
value regardless of fin position. For shark typesh as Chun Chi and Sha Qing, this

results in a large number of ‘other’ fin positiand since traders do not need to label
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these fins by fin position to inform potential buyef their value. In contrast, fins from
shark types such as Qing Lian and Liu Qiu appeaaty substantially in value based on
fin position and thus are always labelled by fisigon (i.e. almost never labelled as
‘other’). For these reasons an interaction ternsfark type — fin position fag, which

determines the probability that fins were presemas included in Model B.

Model B is thus a mixed model in which the prodofcthe binomial parameter, either 0
or 1, and the negative binomial parameter, a pesititeger representing traded weight
per auction, produces a probability distributiontfatal auction weight for each of the

768 shark type — fin position combinations. A flthart showing the structure of Model

B is shown in Figure 2.13 and the Model B paramigtguts are detailed in Table 2.5.
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Figure 2.13 Flowchart showing the derivation and relationstiptveen parameters for Model B.
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Large rectangular boxes represent loops. Thinarindicate that the ‘parent’ node
determines the ‘child’ node in a stochastic manrigwold arrows indicate that the
‘child’ node is logical and therefore calculatedrfr the ‘parent’ node. Ovals
represent stochastic nodes (random variables),eakesmall rectangles represent
deterministic nodes, such as data or priors. ®oarstochastic precision nodes are

included in the model but not shown on this figimesimplicity of presentation.
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Table 2.5 Variables used in Model B and their assigned distions and priors. Precision is

calculated as 1/variance-dgamma (0.001,0.001) represents a gamma-distdbute

random variable with scale of 0.001 and shape@FD.

Variables (total number of

parameters estimated)

Distribution

Mean

Precision

Base parameters

Base mu, k and g (3)

Normal

0.001

Effects parameters
trader _mu (4)
trader_k (3)
trader_g, (3)
fin_mu (2)

fin_k (4)

fin_g (2)

shark_mu (3)
shark_k (2)
shark_g (3)

fin-shark interaction parameters (8

)

Normal

~dgamma
(0.001,0.001)

Negative binomial parameters
mu and k

Binomial parameter

g

Logical

= base + trader effect 4

fin effect + shark effect

NA

Poisson parameter

lambda

Gamma

k/mu

Transformed binomial parameter

p

Logical

=1 —inverse logit(g)

NA

Z (represents weight of fins)

Normal

lambda

1/lambd

y (represents whether fins were
present)

Bernoulli

NA

x (model result)

Logical

y*z

The final step in Model B involves sampling fronettistributions of the 768

combinations to fill in an array representing thetaon calendar for the period October

1999 to March 2001. The array consists of thehdBlstype - fin position combinations

as columns and a vector of the sequence in whachintg houses held auctions in the
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other dimension (513 rows). Each cell in the arsagither filled by an observed traded
weight or mapped to one of the 768 distributiond igratively sampled. Column totals
produced through iteration provide total tradedghts by shark type and fin position

over the 18 month period of interest.

2.4.4 Results for Model B: Prediction of Auction WeiglaisUnobserved Auctions

Preliminary versions of Model B estimated an effecteach individual trader, shark type
and fin position fomy, k andg. The 95% probability intervals for these sepaedfects
were compared and grouped where similar, then sidujéo posterior p-value testing
(see Section 2.4.2) to determine the appropriasenfethe groups in terms of their
predictive value in reproducing existing data (128D). Probability intervals for each
effect and their final groupings are shown for énadhark and fin effects in Figure 2.14.
In some cases, for example the fin effectifahe probability intervals appear to overlap
between groups but model convergence diagnostiezamination of p-values for the
various groups indicated that separate groups peatlbetter results. In other cases, for
example the shark effect fgr effects were grouped into four groups, rathen tihaee as
suggested by Figure 2.14, in order to aggregatetbbark types with high occurrence of
‘other’ fin positions, and those shark types witvloccurrence of ‘other’ fin positions

and thus improve estimation of the interaction term

Interaction effects for the four shark type groaps two fin position groups were
estimated as shown in Table 2.6. Since the inieraterm is added to the bagealong
with the trader, shark type and fin position effeend since in the model the value of the
g parameter has an inverse effecipahe probability of observing fins of a particular
combination (i.eg = logit(p) org = In((1)/p) ), a low interaction term indicates a high

probability of observing fins. As expected, thmteraction term for Chun Chi and Sha
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Figure 2.14 Probability intervals for the effects (i.e. offsérom the base mean represented by
zero) based on trader, shark type and fin posfoothe parametensiy k andg. The
intervals are represented by the line, with theiaredhown as a point. The numeral
over each line indicates the assignment of eadkichdhl effect to a group based on
similarities in the intervals. The abbreviationdw the shark types and fin

positions given in Figure 2.6 and the traders ihl@2.2.
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Table 2.6. Median and 95% probability interval for shark typén position interaction effects
for g, the variable reflecting the probability that fiolsa given combination are present
at auction. See Table 2.7 for data (observed nuwfdets) on which shark types had
high or low numbers of ‘other’ fin positions.

Fin Position

Dorsal, Pectoral, Caudal

(Group 1) Other

(Group 2)

Shark Type
Ya Jian, Qing Lian, Wu Yang -1.32 (-1.65 t0 —0.98 1.32 (0.98 to 1.65)
Hai Hu, Wu Gu, Liu Qiu
(Group 1)
Ruan Sha -0.41 (-1.24 t0 0.09 0.41 (1.24 to -0.09)
(Group 2)
Bai Qing, Chun Chi, Gu Pian, 1.05 (0.82t0 1.35 -1.05 (-1.35 t0 —-0.82)
Sha Qing
(Group 3)
Other 0.70 (0.43 to 1.05 -0.70 (-1.05 to -0.473)
(Group 4)

Qing ‘other’ fin positions, as well as the ‘othehark types’ ‘other’ fin position was low,
meaning that these fins are frequently observadohtrast, thg interaction term for
shark types such as Qing Lian and Liu Qiu ‘othir’dositions was high indicating a low
frequency of occurrence. The interaction effectRaoan Sha is intermediate to these
groups, and its 95% probability interval straddleso, thus the term is not particularly

important in influencing the estimate of total anstweight for Ruan Sha fins.

The posterior p-value testing revealed that ofAli®4 observed data points, only 305
(4.5%) were found to be significantly (p<0.05) undeedicted by the model. The under

predicted total auction weights were generallyrifisted in proportion to the frequency
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of each fin position, shark type or trader in tlagadet (Figure 2.15). One exception to
this was the shark type Ruan Sha (RS) which ocdunreery low frequency in the data
set (n=39) and had a large number of under pretiaéa points (n=25). This was due to
a very lowp value for Ruan Sha in the binomial portion of thedel p ranged from
0.00458 to 0.115 depending on trader and fin ogitivhich acted to produce a large
number of zero weights, thus depressing the sttichestimate of total auction weight

when summed over numerous iterations.

Fin Position Shark Type Tradel

Freauencv

noao <)

WY

Figure 2.15 Results of posterior p-value assessment by fintipasishark type and trader for
Model B. Frequency is shown on the dependent &&igy bars indicate the number
of data points simulated (n=1,980 for each set byfisition, shark type and trader);
black bars indicate the number of significantly engdredicted total auction weight

values (n=304 for each set).

In addition to providing a useful check on the appiateness of the effects groupings,
the posterior p-value analysis was used to derivestimate of the degree of under
prediction in Model B as a whole. This was accastigd by summing the observed total
auction weights for all 1,980 data points and cammggthis total with the sum of the
predicted total auction weights. The sum of 1,6Bferved total auction weights was
517,288 kg as compared to the sum of predictetidatdion weights of 472,482 kg.

This suggested a correction factor of 1.095 shbaldpplied to the predicted auction
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weights generated by Model B to upwardly adjustptealicted totals and provide a more

accurate sum of total weights.

The results of Model B consist of probability distitions for weights of fins auctioned in
each of 48 categories, representing 12 shark gpe<! fin positions. Each of these
probability distributions represent the sum of hcemponents:
i) the deterministic sum of fully observed total aoistiveights (n=1,980);
i) the stochastic sum of the total auction weight¢dose auctions where
weight data were missing but predicted by Modeh#d
iii) samples from the 768 predicted distributions (1&lstypes x 4 fin positions
x 12 traders), upwardly adjusted by the correctamtor of 1.095 to fill-in
weights for each known, but unobserved auctionnguitie 18 month period
(n=365).
For presentation purposes the results were comv&dm catties to kilograms (1 catty =
0.60479 kg), and scaled to represent an annuadefiables 2.7 and 2.8 present the
results in the form of probability intervals forabaof the 48 combinations modelled, the
overall auctioned fin weight for each type of shankd the proportion of each shark’s

fins in the auctions.

Model convergence was evaluated using the sameab#gs described above for Model
A. All parameters were found to have convergedrdftt0,000 iterations. Although
autocorrelation was not detected in CODA analygibsequent iterations undertaken to
produce results were thinned by 10 to prevent amaining bias due to autocorrelation

in the chains.
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Table 2.7 Posterior predictive means, 95% probability intés\{in parentheses), and observed
sample size (in brackets) for total auctioned sfiarkweight (kg) by shark type and fin
position. Means are presented because the ditrilsuare nearly symmetrical. Model

output has been divided by 1.5 to express figunearoannual basis.

Trader’s Dorsal Fins Caudal Fins Pectoral Fins Other Fins
Market
Category
Ya Jian 40,682 [n=63] 34,126 [n=58] 137,045 [n=79] 2,203 [n=3]
(33,820 t0 48,383) | (27,191 to 42,053) | (118,337 to 158,334) | (72 to 6,689)
Qing Lian | 7,645 [n=41] 8,282 [n=49] 21,462 [n=34] 465 [n=0]
(6,254 to 9,140) (6,975 to 9,745) (17,789 to 25,587) | (O to 1,399)
Wu Yang | 9,834 [n=61] 9,685 [N=58] 32,050 [n=78] 558 [n=1]
(8,47110 11,378) | (8,306 t0 11,241) | (28,409 to 36,122) | (100 to 1,465)
Hai Hu 4,018 [n=34] 3,811 [n=19] 11,846 [n=56] 346 [n=3]
(3,273 to 4,895) (3,035 to 4,713) (9,915 to 14,035) (104 to 825)
Bai Qing 5,750 [n=44] 4,431 [n=29] 11,600 [n=18] 16,9781 [n=41]
(4,657 to 6,995) (3,324 t0 5,685) (8,681 to 14,946) (13,184 to 21,293)
Ruan Sha | 376 [n=14] 313 [n=7] 1,036 [n=17] 112 [n=1]
(225 to 587) (165 to 527) (634 to 1,599) (13 to 385)
Chun Chi 6,657 [n=50] 6,475 [n=58] 15,640 [n=49] 25,986 [n=59]
(5,552 to 7,943) (5,403 to 7,774) (12,676 t0 19,111) | (22,260 to 30,131)
Gu Pian 2,245 [n=15] 2,134 [n=15] 6,084 [n=21] 10,334 [n=52]
(1,685 to 2,907) (1,539 to 2,778) (4,528 to 7,919) (8,298 to 12,749)
Wu Gu 7,927 [n=49] 7,697 [n=43] 20,656 [n=39] 916 [n=1]
(6,576 t0 9,402) (6,326 t0 9,249) (17,003 to 24,885) | (466 to 1,825)
Sha Qing | 5,052 [n=33] 4,012 [n=16] 11,910 [n=30] 19,938 [n=60]
(3,976 to0 6,245) (2,913 t0 5,233) (8,923 to 15,277) (16,023 to 24,280)
Liu Qiu 4,766 [n=46] 4,181 [n=44] 12,676 [n=55] 244 [n=0]
(4,017 to 5,625) (3,417 to 5,048) (10,580 to 14,946) | (O to 735)
Other 101,645 [n=122] 95,275 [n=118] 211,717 [n=84] 226,837 [n=113]
(92,130 to 112,330) | (85,840 to 105,717)| (184,300 to 242,198) | (198,008 to 258,850)
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Table 2.8 Estimates of total traded shark fin weight (kg)sbwark type with all fin positions
combined. Means are presented because the digiribare nearly symmetrical.
Model output has been divided by 1.5 to expreagdig on an annual basis. All
guantities have been stochastically simulated husl individual categories may not

sum to the total given in the last row.

Total Traded Weight (kg) Percentage of Overallp@rdon of
Trade by Category

Trader's Posterior 95% Probability Posterior Mean 95% Probability
Market Mean Interval Interval
Category
Ya Jian 214,096 190,791 to 240,021 18.21 16.58 to 19.95
Qing Lian 37,852 33,465 to 42,900 3.22 2.84 t0 3.65
Wu Yang 52,133 47,738 to 57,092 4.44 4.02 to 4.89
Hai Hu 20,023 17,422 to 23,018 1.70 1.47 to 1.96
Bai Qing 38,763 33,304 to 44,634 3.30 2.84 10 3.81
Ruan Sha 1,837 1,221 to0 2,672 0.16 0.10to 0.23
Chun Chi 54,754 49,149 to 61,043 4.66 4.17t05.21
Gu Pian 20,797 17,640 to 24,329 1.77 1.50 to 2.07
Wu Gu 37,191 32,655 to 42,335 3.16 2.76 to 3.6(
Sha Qing 40,924 35,433 to 47,012 3.48 3.02 to 3.99
Liu Qiu 21,865 19,220 to 24,905 1.86 1.631t0 2.14
Other 635,836 584,630 to 690,67( 54.06 51.77 to 56.26
All Categories 1,175,712 1,107,975 to 1,247,480 NA NA

These probabilistic Model B results were compacea tleterministic estimate of the
same auctioned fin weight quantities in order tolese differences between the two
methods. To construct the deterministic estimatenean auction weight for each of the
48 fin combinations was calculated for each trad&r every missing auction of a given
trader, the 48 mean auction weights for trader viidee-in, then the sum of the missing
auctions’ traded weights and the observed auctivaded weights were tallied. A

comparison between the methods is illustrated guifei 2.16.
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Although the deterministic and Bayesian figuresahatosely, the deterministic means
fell within the relatively narrow 95% Bayesian padtility intervals for only 15 of the 48
combinations. Combinations with particularly pogatches between the two methods
include Ya Jian Caudal and Pectoral, Qing Lian &tattWu Yang Pectoral, Bai Qing
and Sha Qing Pectoral, Bai Qing and Chun Chi Otret,most of the Other (unidentified
shark type) fins. There is no particular pattggpaaent in these combinations, however
the Bayesian probability intervals are generallglavifor the combinations with high
divergence between the best estimates of the tviloatie indicating there is greater

uncertainty in the data for these combinations.

Despite the lack of correspondence in the two nutlior some combinations shown in
Figure 2.16, the overall summation of all combioasi is strikingly similar. The
Bayesian posterior mean for total auctioned weidlit, 175 mt yeat (probability
interval of 1,108 to 1,247 mt yéBrrepresents 99.68% of the deterministic estimfte o

1,179 mt per year.

2.5 Conversion of Auctioned Fin Weights to Numbers and

Biomass of Sharks (Model C)

The next step in the analysis (Model C) was toapalyesian modelling methods to
convert the total auctioned fin weight estimates/gted by Model B into equivalent
numbers and biomass of sharks. The use of Baye®é#mods in Model C was
particularly apposite since the algorithms for thesnversions proved to be highly
constrained by the availability of suitable dafdis section describes the two

complementary components of Model C: the convarsidotal auctioned fin weights to
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number of dorsal, pectoral or caudal fins for estréwrk type which represent the number
of sharks (Part 1); and converting fin length toolehength, and then to biomass of a
single shark, and finally multiplying this biomdsg number of sharks to calculate total

biomass (Part 2).

2.5.1 Algorithm and Results for Estimating Number of 8kdModel C, Part 1)

The theory underlying this first component of Mo@els that each shark utilized in the
shark fin trade will contribute one dorsal fin, twectoral fins and one caudal fin.
Therefore, if the number of dorsal, pectoral anade fins represented in the auctioned
fin weights can be estimated, this number shoulddagévalent to the number of sharks
represented for dorsal and caudal fins, and equ=dlf the number of sharks represented

for pectoral fins.

As the accuracy of this algorithm is highly depertdn beginning with the correct
auctioned weights for each fin position, severahaoclatural issues were carefully
considered prior to applying any conversion factorthe weights generated by Model B.
The first issue concerned the labelling of dorssl.f It was recognized that some sharks
possess two dorsal fins, but in interviews tradeated that only first dorsal fins would be

labelled as - ‘zhi’ (i.e. the ‘dorsal’ category) due to lowguality ceratotrichia (fin

rays) in second dorsals. Given the concerns regamdixing of product types (see
Section 2.2.1), it appeared safe to assume thdlesirend lower value, second dorsals

would not be mixed with first dorsals.

Another issue involved the allocation of ‘otheridi representing both shark types and fin
positions. Fins labelled as ‘other’ for shark type¢he database were excluded from the

Model C analysis. This decision was taken baseithemulifficulties associated with
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applying appropriate conversion factors to a br@agje of fin sizes and shapes about
which little was known. Instead, this analysisreates numbers and biomass for the
eleven shark types included in the genetics studly @hapter 3). Extrapolation of these
numbers, in proportion to weight, to all unstudsbdrk types in Hong Kong and

worldwide is undertaken in Chapter 4.

The disposition of fins labelled as ‘other’ fin fta@n within the selected eleven shark
type categories was less easily decided. As demaded by the discussion of the
interaction term in Model B (Section 2.4.4), fomsoshark types the ‘other’ fin position
category was likely to contain dorsal, pectoral eaddal fins that were left unspecified
because their value could be clearly conveyedaietrs by a description of shark type
only. These ‘other’ fins should thus be redisttéalto the dorsal, pectoral and caudal
categories. However, in some cases, the ‘othepdisition category may contain second
dorsal, upper caudal, pelvic or anal fins, whichuldanot be desirable to include in the
analysis because they would improperly inflategsi@mates if counted as first dorsal,
pectoral or caudal fins. Based on experienceatans and discussions with traders, it
was understood that all lower value fins such asrsa& dorsal, upper caudal, pelvic or
anal fins were unlikely to be sorted by shark tgpet was not worth traders’ effort to do
so. Therefore in the auction database they woeilihibelled as ‘other’ shark type and
these fins have already been excluded from ModeD@ this basis, it was assumed that
any fins labelled as one of the eleven shark tygtegories but given a fin position of

‘other’ were unspecified dorsal, pectoral or caufue.

The first step in Model C was to redistribute aler’ fin position weights from the
eleven identified shark type categories to thealpmectoral or caudal categories for that
shark type. This redistribution was accomplishg@$signing one quarter of the ‘other’

fin position fins to dorsal and caudal fin positicategories, and half of the ‘other’ fin
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position fins to the pectoral fin position categofbhis logical distribution of fins
between the dorsal, pectoral and caudal fin paositis generally supported by the
distribution of fin weights between dorsal, pectamad caudal fin weights in Table 2.7.
However, since Model C does not explicitly accaantpotential, and unknown,

variability in these ratios, in this sense it ureddimates uncertainty.

Model C, Part 1 was founded on a supposed powatiaaship (i.e. linear in log form)
between shark fin length, which was available ftbmauction sheets in qualitative
categories (Section 2.2.1), and shark fin weigtite slope and intercept of this
relationship is expected to vary by shark type famgosition. If the weight of a single
fin in a given shark type — fin position combinatican be determined from available
information on fin lengths, it is possible to estiim the number of fins present in a given

mass of a particular shark type — fin position coration.

Data on fin sizes were available from the auctioeess in qualitative categories which
were translated into numerical classes of 1 ta @scending order of size, when the data
were entered (see Section 2.2.1). Auction date werted by shark type — fin position
combination and the proportion of fins in eachtaf 6 categories was obtained (Figure
2.17). In order to fairly represent traders whandbreport lot weights, proportions of

each fin size were based on the number of bagaabf €ze class of fins.

Each qualitative fin size class (1-6) was assigneddpoint length based on a small set
of observations (n=179) at auctions covering aeasfgshark types, fin positions and
sizes (Table 2.9). These data were obtained bgreing lengths measured by auction
personnel using a measuring tape during auctiames tffader only) or by my visual
approximation of lengths based on finger-span nreasents or measuring fins against

floor tiles with known lengths. Traders were higkknsitive at auctions in general and
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Hong Kong auction dataset. Values in the six slasses sum to 1 in each plot.
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Table 2.9 Assignment of length midpoints (cm) in each sizsslby shark type and fin position.

Size Class
Group | 1 2 3 4 5 6
Dorsal
Ya Jian A 11 15 19 23 21 30
Gu Pian B 16 22 29 35 41 48
All others C 13 18 23 28 33 38
Caudal
Ya Jian A 8 12 16 22 30 34
Qing Lian B 18 22 26 30 34 38
Wu Gu C 5 7 9 11 15 17
All others D 10 13 16| 21 24
Pectoral
Ya Jian and A 28 33 39 44 5( 61
Wu Gu
Chun Chi B 13 18 23 28 33 38
and Gu
Pian
All others C 18 23 28 33 34 45

even more so when they believed any data were becwyded, therefore the
opportunities for data collection to support thisnponent of the algorithm were
extremely limited. Informal interview informatidrom co-operative traders was also
used to assign the length midpoints, and the veldingths of dorsal, pectoral and caudal
midpoints were cross-checked using ratios (each lemgth as a proportion of pre-caudal

length) from taxonomically accurate drawings (Cogrma(1984), Figure 2.18).
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For dorsal fins, most of the eleven shark typesvesisigned to a default vector of
midpoints (Table 2.9). Exceptions included Ya Jisglieved to be blue shafRrionace
glaucg which has a somewhat smaller first dorsal fin @uwPian (believed to be the
great hammerhea8&phyrna mokarranwhich has an unusually large first dorsal fin.
Lower caudal fin midpoint lengths had a larger nemiif exceptions. Ya Jian was
assigned a larger size for lower caudal fins, as @iag Lian (believed to be shortfin
mako,lsurus oxyrinchuswhich have considerably larger lower caudal fine to their
lunate morphology. Wu Gu (believed to be thresh®&iapiasspp.) have smaller lower
caudal fins and were sized accordingly. Pectamagifoups were easily defined based on
larger and smaller than average fin lengths. Ba@tllian and Wu Gu have very long
pectoral fins and were thus assigned their owrelangdpoints, whereas Chun Chi
(believed to contai®phyrnaspp.) and Gu Pian have smaller pectorals and agsigned

smaller midpoints.

The relationship between fin length and fin weiglas supported by data collected from
the Hong Kong shark fin market (Table 2.10). Betw®©ctober 2001 and March 2002,
fins (n 10) from all eleven shark types and each of theetfin positions (397 fins in
total) were borrowed from a co-operative trader @hen to a laboratory for measuring
and weighing on an electronic balance. Fins wezasured along the anterior edge (as is
the custom in the Hong Kong shark fin trade) tortearest 0.5 cm and weighed to the

nearest hundredth of a gram.

The weight of individual fins may vary substantabased on the amount of muscle
tissue remaining attached to the fin and also basadoisture content. Both factors
increase the variance in the length-weight relatigm but should be accounted for when

estimating fin weights across the range of findianed in Hong Kong.
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Table 2.10 Empirical length — weight relationships for dridtask fins. The sample size is given
by n. Slopesr) and interceptdd) given here are based on data transformed by
natural logarithm and modelled using least squargessions of the forng= mx+h.
Model C generates slopes and intercepts from tteeudang Bayesian methods
therefore its parameters may differ. Instancesrevttee correlation coefficient @R
is reported as being equal to 1 reflect the siedilstesults obtained but do not

necessarily imply that the relationship is knowthwierfect certainty.

Dorsal Caudal Pectoral

n | m b R n | m b R n | m b R

YJ 12| 212, -273 0.8 10| 1.70 -1.52 0.8713| 3.06 -7.01] 0.94

QL 10| 211} -190 0.8 9| 251 -3.28 0.9710| 3.14 -5.88 1.0(

WYy 13| 3.04, -494 09] 20| 255 -3.35 0.9%11| 240 -3.68 0.84

HH 7| 281 -4.44 0.74 10| 2.10 -1.95 0.8]110| 2.68 -4.64 0.9%

BQ 11| 240, -3.01 0.7 10| 2.66 -3.95 0.7¢ 10| 3.28 -6.72  0.7(

RS 10 3.04 -537 09p20| 2.92 -5.02 0.9%10| 284 -5.22  1.0(

CcC 20| 298 -533 09B31| 290 -468 09¢21| 281 -4.38 0.91

GP 10/ 239 -3.66 09p10| 2.74 -4.18 090 10| 2.84 -492 0.94

WG 10| 3.09] -531 0.6y 9| 3.13| -486 09210| 174 -1.36 0.69

SQ 10, 358 -6.97 0.8f10| 271 -413 0.9%210| 252 -3.95 0.66

LQ 11| 278 -452 09¢ 8| 2.33 -2.96) 094 11| 3.16 -6.64 0.99

Like Model A, Model C Part 1 employs a power radaship transformed using the

natural logarithm to the forny = mx+ b, but in this casex is the length of a single fin

andy is the weight of that fin. Lengths and weightedié the model were transformed

by natural logarithm. The algorithm and paramefi@rdModel C, Part 1 are shown in

Figure 2.19 and Table 2.11.

92



Precisio
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Figure 2.19 Flowchart showing the derivation and relationshepaeen parameters for Model C,

Part 1. Thin arrows indicate that the ‘parent’ @altermines the ‘child’ node in a

stochastic manner. Bold arrows indicate that théd’ node is logical and therefore

calculated from the ‘parent’ node. Ovals represémthastic nodes (random

variables), whereas small rectangles representrdigiistic nodes, such as data or

priors. Priors on stochastic precision nodes weskided in the model but are not
shown here for simplicity of presentation.
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Table 2.11 Variables used in Model C Part 1 (estimation of banmof sharks ) and their assigned
distributions and priors. ~dgamma(0.001,0.008) gamma-distributed random
variable with scale 0.001 and shape 0.001.

Variable Distribution Mean Precision (1/variance)
(number of
parameters

estimated)

base slope (1) Normal 1 0.01

base intercept (1)

fin effect for slope| Normal 0 ~dgamma(0.001,0.001)
(2 for dorsal, 2 for
caudal, 4 for
pectoral)

fin effect for
intercept

(3 for each fin

position)
Slope (2 to 4) Logical = base slope + fin effect for | NA
slope
Intercept (3) Logical = base intercept + fin effemt f| NA
intercept
fin size class Categorical NA NA
(probabilities in
six categories
must sum to 1)
Length of a single| Normal fin size class 100
fin
average length Logical = mean of length for each fin NA
position
Weight of a single| Logical = (length-average NA
fin length)*slope
total weight of fins| (see Model B) NA NA
number of fins Logical = total weight of fins/weight NA
(sharks)

As in Model A, the slope and intercept for this atipn are constructed from random

variables representing a base slope or intercedtan additive effect for shark type. The
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fin effect for Model C Part 1 was handled diffetgnhowever, because fin position has a
critical role in determining the fin’s length-weigtelationship. Therefore, each fin
position (i.e. dorsal, pectoral and caudal) wagigiits own base slope and intercept, and
its own set of shark type effects. This in effelelvated the importance of the fin effect
over the shark effect. This approach is groundeshark morphology since the

difference in size or weight of fins between firsgiimns on the same shark is greater than
the differences between, for example, dorsal fiomfa variety of shark species (see

Figure 2.18).

Empirical data on fin lengths and weights were usethe model to generate the base
slope and base intercept for each fin positionelsas the shark type effects on slope
and intercept. As in Models A and B, initial venss of Model C Part 1 estimated an
effect for each shark type — fin position combioatseparately but subsequently grouped
effects to reduce the number of parameters beitmated. Figure 2.20 shows the final
groupings and indicates wider probability intervaisdorsal and caudal fins than for

pectoral fins.

The posterior p-value evaluation revealed high ipte@ power for dorsal and pectoral
fins, and a slightly lower but still acceptablegtintive power for caudal fins (Table
2.12). Less reliable estimators for caudal finsenexpected due to the highly variable
methods of removing caudal fins from the carcasshwiesult in a number of different
shapes and weights among caudal fins from the shar type. Despite the
demonstrated predictive power of the model withgreups as assigned in Figure 2.20,
in some cases, for example Ya Jian dorsal finsetteet group assignment does not
appear appropriate based on the probability intemwhen estimated separately. Such
cases were carefully examined and various grougrasents were attempted for these

fins, but the estimators had the greatest predigiower and converged most efficiently
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Figure 2.20 Probability intervals for the shark type effects dorsal, caudal and pectoral fins
when estimating fin weight from fin length. Thermerals above each interval
indicate the final grouping for effects. Effectene estimated for 1 to (n-1) groups

but the ' group’s effect was assigned such that the sumi effaicts would equal 1.
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Table 2.12 Results of posterior p-value analysis (Gelman.et@®5) for predictions of fin weight
using model estimators and existing data on figtlen P-values below 0.05 indicate

a significantly under predicted fin weight.

Dorsal (n=124) Pectoral (n=127) Caudal (n=147)
Number of under 5 4 10
predicted data points
Percentage of total 4.03% 3.17% 6.80%

Shark types which HaiHu=1(n=7) Chun Chi=1 (n=21) Ruan Sha=2 (n=20
were under predicted | WuGu=3(n=10) | GuPian=2(n=10) | Chun Chi=3 (n=31
(number of data point§ Sha Qing =1 (n=10)| LiuQiu=1(n=11) | GuPian=1 (n=10)
of that shark type Wu Gu =4 (n=10)

simulated)

when the groups were specified as shown in thedig®dd groupings of slope and
intercept effect terms such as these may be exguldig an interaction between slope and

intercept manifested when the effects terms arepgd.

For each of the 33 shark type — fin position corabaons, each iteration of Model C Part
1 draws a fin size (a random variable between 16amportional to the observed
frequency of that fin size within each shark typn-position combination) and maps it
to the appropriate midpoint length. The midposnthen used as the mean for a normally
distributed random variable which gives the fingdn The precision (1/variance)
assigned to this distribution was such that thgeasf lengths generated would fall
between the next lowest and next highest fin sif&s. example, the fin lengths
generated for Ya Jian dorsal fins in size clas®@lvrange from 11 to 19 cm. Fin length
is converted to a fin weight using the slope andrioept terms generated by the model
from the empirical data. This fin weight, represgg the weight of a single fin for that

shark type — fin position combination, is usedresdivisor with the total auctioned
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weight per year for that combination as the diviledVhen this process is repeated
under Monte Carlo iteration, the quotient, whichresents the number of fins present,

will converge to a stable distribution of values.

The results for mean weight of a single fin arespnted in Table 2.13. Deterministic
calculations were conducted for comparison usiegiidpoints in Table 2.9, the slopes
and intercepts in Table 2.10, and a determinisiic ef observed weights traded in each

fin size category. As these fin weight estimaresfandamental to the estimate of shark

numbers, a close examination of the results isamaed.

Table 2.13 Posterior median and 95% probability intervalsvieight of single fin (in grams) for

each shark type — fin position combination in Mo@dPart 1. Deterministic weights,

calculated using the midpoints (Table 2.9) andstbpes and intercepts shown in Table

2.10, are shown in columns marked

Shark Type Dorsal Pectoral Caudal

Ya Jian 43 (5t0 137) 47 138 (41 to 311) 12p  200(247) 42

Qing Lian 193 (17t0582) | 169| 128 (32to 371) 17R 66 (42 to 492) 45
Wu Yang 214 (18t0 614) | 262 149 (32 to 337) 151 (%8 166) 63

Hai Hu 223 (57t0500) | 246 191 (42 to 365) 188 3FBtp 145) 99

Bai Qing 223 (54t0474)| 225 140 (39 to 356) 173 (BBto 132) 60

Ruan Sha 271 (31t0 530) 247 104 (41to 316 142 (668 114) 62

Chun Chi 76 (7 to 312) 111] 85 (14 to 286) 304 7t(547) 73

Gu Pian 218 (41to 549)| 89 163 (39 to 303 174 186t¢ 153) 81

Wu Gu 124 (16 to 342) | 84 199 (74 to 428) 198 26(82) 217
Sha Qing 282 (73to 517)| 379 229 (85 to 457 207 (4880 156) 84

Liu Qiu 208 (35t0 465) | 186 | 88 (27to172) 131 61 137) 58

Range of 22 to 285 22 to 643 16 to 354

Weights

observed in

Hong Kong

empirical datal

(n=397)
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For dorsal fins, the posterior medians for weighd single fin lie near, but under, the
upper end of the range of values observed in thgraral dataset, i.e. 285 g. The dorsal
fin 97.5% percentile for most shark types is coasably higher than this value, except in
the case of Ya Jian fins which are estimated wahlzstantially lower weight. This result
may derive from the relatively larger proportionsofall size class fins in the Ya Jian
dorsal records (see Figure 2.17). Posterior méhameights for dorsal fins are
generally similar to their deterministic analogs;ept for Gu Pian, whose especially
large dorsal fin may be reflected in the higher é&agn estimate. Pectoral fins' posterior
medians and probability intervals all fall withimetempirically observed range. The
largest discrepancy between the Bayesian and diefstim estimates in pectoral fins
occurs for Chun Chi, which has comparatively spedtoral fins. Caudal fin estimates
all lie within the empirically observed range excp the upper percentiles of Qing Lian
caudals. These fins are known to be particulaalyable because of their thickness,
possibly due to the structure necessary to prapelod the fastest swimming of all sharks
(Last and Stevens 1994), and thus higher fin weigtight be expected. Wu Gu caudal
fins show the largest divergence from determinissitmates with the Bayesian estimate
predicting a lower fin weight as might be expedieth thresher morphology (Figure

2.18).

The results for number of fins per year for eacthef33 combinations are presented in
Table 2.14 with the estimate for pectoral fins bdlin order that all estimates correspond
to the number of sharks. These results are caettagth an estimate (Figure 2.21)
based on deterministic single fin weights and thegninistic estimate of total auctioned
weight (Figure 2.16) which is proportioned into tlaious fin size classes based on fully
observed data (Figure 2.17). The Bayesian estinedglicitly account for uncertainty

and provide probability intervals for the numbesbhfrks represented, thereby conveying

two key advantages over deterministic estimatescdan a pure scaling approach.
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Table 2.14 Medians and 95% probability interval of the numbgsharks (in thousands)

represented per year in the Hong Kong auction lokatghark type and fin position.

Estimates based on dorsal and caudal fins assuenéroper shark whereas

estimates based on pectoral fins have been haiviikitable, ie 2 pectoral fins = 1

shark.

Trader’'s Market | Dorsal Fins Pectoral Fins Caudal Fins
Category
Ya Jian 980 503 1,638

(302 to 8,560) (223 to 1,705) (231 to 17,053)
Qing Lian 40 86 51

(13 to 443) (29 to 339) (17 to 195)
Wu Yang 47 111 147

(16 to 532) (48 to 503) (60 to 2,387)
Hai Hu 18 32 50

(8t 72) (15 to 136) (26 to 117)
Bai Qing 45 72 147

(20 to 185) (27 to 262) (64 to 609)
Ruan Sha 1 5 5

(0.6 to 13) (1to 14) (2 to 61)
Chun Chi 175 168 177

(420 1,770) (50 to 1,037) (89 to 2,629)
Gu Pian 22 34 55

(8 to 116) (18 to 139) (30 to 332)
Wu Gu 65 54 311

(23 to 505) (24 to 145) (124 to0 2,219)
Sha Qing 35 48 103

(19to 134) (2310 131) (56 to 196)
Liu Qiu 24 74 72

(10 to 142) (36 to 244) (31to 839)
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In many cases the Bayesian posterior probabilgtridutions overlap the deterministic
estimates. However, in other cases the two typestomates diverge by nearly an order
of magnitude. Divergent estimates such as thasBdoQing and Sha Qing caudal fins
can be traced back to Bayesian posterior tradeghtvestimates whose probability
intervals do not overlap the deterministic estimdféigure 2.16). The divergent
estimates for Wu Gu caudals illustrate anotherareé#asr the difference, as they are likely
to arise from highly varying single fin weightsvdh when the Bayesian posterior
probability intervals overlap, there is sometime®asiderable difference between the
Bayesian posterior median and the deterministicutalion. This is often the case for the

highly variable caudal-based conversions and fodiga fins.

The number of sharks represented for each finipasibver all of the eleven shark types,
was tallied stochastically. In addition, a valoethe combination of the three fin
positions was obtained by stochastically summimgdbrsal, pectoral and caudal tallies,
adding them together and dividing by three (Tablbp

Table 2.15 Minimum estimates of the total number of sharkatitlions) of the eleven studied

shark types represented in the Hong Kong auctite skt per year based on

Bayesian and deterministic methods.

Based on Deterministic| Median 25" 97.8" Percentile
Percentile

Dorsal 1.252 1.925 0.777 10.070

Pectoral 1.264 1.415 0.862 2.666

Caudal 1.274 3.542 1.377 19.890

Combination of all fin 1.265 2.608 1.352 7.998

positions

High median estimates for some shark types (mafalyian) contribute to a higher
Bayesian value overall when summing by fin positieross all shark types.

Deterministic estimates are, however, containetiwiihe Bayesian posterior probability
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distribution except for the caudal fin estimat@sie extremely large probability intervals
in the overall caudal fin estimates are believedrise from very high variances observed
in the length-weight relationship. The differeathniques used for cutting caudal fins

from the shark carcass render caudal fins probierfatthis type of analysis.

The relatively wide probability interval observeat tiorsal fins is mainly a function of
the high uncertainty in just one of the shark typ&sJian. In the case of Ya Jian dorsal
fins, the length-weight relationship appeared défe from other fins (Figure 2.20) but
due to the small number of samples (in this cade@f=effects were estimated based on
combining Ya Jian dorsals with the most similareottiorsal fins. Unfortunately, these
group-based estimates may not have markedly imdrtheestimates for Ya Jian
dorsals. Also, to some extent the uncertaintystmetors for Ya Jian fins is
compounded by the high volume of shark fin tradethis category (i.e. 18.21% of the

total auctioned weight).

All of the estimates in the tables and figures &bare considered to be minimum
estimates since there may be individuals of thiseen shark types auctioned under the
label of ‘Other’ shark type which are not accourfiadin this analysis. Chapter 4
converts the results obtained from Model C to qitiastrepresenting the shark fin market

as a whole.

2.5.2 Algorithm and results for estimating whole weighslearks

Model C, Part 1 has produced estimates of fin lkesighd weights, and the corresponding
numbers of sharks for each of the 33 shark type pdsition combinations. The
objective of Model C, Part 2 is to build on thiarmation to produce estimates of the
whole shark weight associated with each of the finsl to tally this to produce an

estimate of the total biomass of sharks represdnteghch of the eleven shark types.
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This exercise facilitates a comparison betweerbibmass of sharks utilized in the shark

fin trade and the landed weights reported by sfishleries (see Chapter 4.)

Model C, Part 2 is based on an algorithm which estsvthe fin length from Model C,
Part 1, which is a dried fin length, to a wet Em¢jth (Step 1). This wet fin length is then
converted to a whole shark length (Step 2), andeently whole shark lengths are
converted to whole shark weights (Step 3). Oneenatbight of single (whole) shark is
estimated for each shark type — fin position coratim, this weight is multiplied by the
number of sharks estimated for that combinatiomfModel C, Part 1 to produce an
estimate of the total biomass of sharks represdi®h 4). The algorithm is illustrated

schematically in Figure 2.22 and details of modebmeters are presented in Table 2.16.
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Table 2.16 Variables used in Model C Part 2 (estimation of leheeight) and their assigned

distributions and priors. ~dgamma(0.001,0.008) gamma-distributed random

variable with scale of 0.001 and shape of 0.001.

Variable Distribution Mean Precision (1/variance)
Slope, dry to | Normal 1 ~dgamma(0.001,0.001)
wet
Intercept, dry
to wet
Dry fin (data from NA NA
length Model C, part
1 and Fong
(1999))
Wet fin Logical = (dry fin length x slope dry to wet)| NA
length + intercept dry to wet
Base slope, | Normal 1 ~dgamma(0.001,0.001)
fin to whole
Base
intercept, fin
to whole
Shark effect | Normal 0 ~dgamma(0.001,0.001)
slope
Shark effect
intercept
Slope, finto | Logical Base slope (or intercept) fin to whol|eNA
whole + shark effect slope (or intercept)
Intercept, fin
to whole
Whole shark | Logical = (wet fin length x slope fin to NA
length whole) + intercept fin to whole
Mean whole | Logical = a x (whole shark length ~ b) NA
shark weight
a Data from NA NA
Kohler et al.
1995
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Table 2.16(cont.)

Variable Distribution Mean Precision
(1L/variance)
b Data from NA NA
Kohler et al.
1995
Precision for | Logical (see text for equation) NA
whole shark
weight
n Data from NA NA
Kohler et al.
1995
2 Logical Variance in whole shark length NA
R? Data from NA NA
Kohler et al.
1995
Whole weight | Normal Mean whole shark weight Precision for whole
of a single shark weight
shark
Number of From Model C | NA NA
sharks Part 1
Total whole Logical = whole weight of a single shark NA
weight times number of sharks

Despite an extensive literature search, the datade to support conversion from dry fin

length to wet fin length (Step 1) were extremetyited. The only identified data set

derives from Fong (1999) and consists of 8 dofdsapectoral and 10 caudal fins from the

blacktip shark Carcharhinus limbatus Fong (1999) measured length along the anterior

edge of each fin, the same method used in thiy statthough the dataset is based on

only one species, and one which is not being aedlys this study, the purpose of this

conversion is merely to account for the changénieingth due to moisture loss during

drying, and this is not expected to vary considgrabross species. Regardless of the

species represented, however, a larger numbengdlea and a broader range of fin sizes
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(the Fong (1999) fins represent lengths only betwk23 and 29 cm) would have been
desirable. Such data could not be collected smghidy due to a lack of access to wet fins
in Hong Kong. Furthermore, rehydration of driaasfias undertaken by Fong (1999),
would have required purchase of dozens of finsvemuald have been prohibitively

expensive.

Step 1 of Model C, Part 2 again takes the form sifrgole linear modely=mx+b, wherey

is the wet length of the fim is the slope of the relationshipis the dry length of the fin
andb is the intercept of the relationship. Each fisiion (i.e. dorsal, pectoral and caudal)
was assigned its own slope and intercept initiafigl this was tested against models in
which slopes and intercepts were grouped. The hvaitle separate parameters for each
slope and intercept (i.e. six parameters in tatal found to have superior predictive
power using the posterior p-value diagnostic (Gelreiaal. 1995), and thus separate slopes

and intercepts for each fin position were retained.

Step 2 of the model requires converting betweerfiwdéngth and whole shark length.
Data sets supporting this conversion were als@mly limited despite a worldwide data
search and examination of shark fin datasets frerNatal Sharks Board in South Africa
and the National Marine Fisheries Service LaboyatoHawaii, USA. Unfortunately for
this study, both of these existing datasets re¢tsaveight of all fins from a given shark to
its whole weight and thus cannot inform conversimmsndividual fins. Therefore, it was
necessary to collect shark morphometric data egfyréar this purpose and this was
accomplished at the fishing port of Su’Ao on thetemn coast of Taiwan in June 2001. A
total of 124 sharks of 12 species representingtieghark types in this analysis (based on
results from Chapter 3) were measured for fin lerdtdorsal, pectoral and lower caudal
fins (anterior margin) and pre-caudal, fork andltgngths (where possible, as some

sharks were already partially processed, i.e. haadbr tails removed). Ultimately only
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those records which included fork length measuresn@nrequired by the conversion in
Step 3 (see below) were utilized in this analyStopes and intercepts were estimated for
the 7 shark types in the database (Table 2.17)thenemaining 4 shark types were
assigned the most appropriate slope and intereeggtcbon overall morphology and
taxonomy. Ya Jian, Qing Lian, Wu Yang, Bai Qindnu@ Chi, Wu Gu and Liu Qiu shark
types thus had empirically-derived data, whereadHdaand Sha Qing were estimated by
the Bai Qing parameters (all Carcharhinids), and>@um were estimated by the Chun Chi
parameters (all Sphyrnids) (Figure 2.18). Ruan(®kbeved to be tiger shark) is most
similar in fin morphology to Bai Qing or Wu Yang,togiven the small size of Wu Yang
individuals sampled in Taiwan, and the relativelsge size of tiger sharks, Ruan Sha was

considered to be better represented by the large®@Bg individuals measured in Taiwan.

Table 2.17 Empirical fin length — fork length relationships feven species of sharks observed in
Taiwan. The sample size is giventoyCoefficients &) and exponentdy given here
are based on least squares regression using pawesd = a x°) fitted to
untransformed data in centimetres. Model C geasrsibpes and intercepts from
these data transformed by natural logarithm andefhexd using a Bayesian linear
model = mx+b), therefore its parameters will diffemstances where the correlation
coefficient (R) is reported as being equal to 1 reflect thestteél results obtained but

do not necessarily imply that the relationshipriswn with perfect certainty.

Dorsal Pectoral Caudal

n | a b B |n]a b R n|a b R
Blue (Ya Jian) 121 2017 0.7 047 12 352 103 (92| 12.78 0.81 0.7¢
Shortfin Mako 29 | 1550f 0.777 0.84 29 8.29 0.86 0p3 [29 595 0.988 D
(Qing Lian)
Silky 10| 7.74| 099 0384 11 1254 0.70 0p8 |10 10.88 .83B6
(Wu Yang)
Sandbar 3| 10.49| 0.76] 1.0( 5 8.3b 081 0p3 |5 5|86 1.05 0.98
(Bai Qing)
Hammerhead 8| 4.24| 1.06/ 0.95 g 4.85 106 099 |8 2J08 132 1.00
(Chun Chi)
Threshers 7| 28.56| 0.56/ 0.83 8 7.66 0716 Of1 |7 996 q.94 0.62
(Wu Gu)
Oceanic Whitetip| 6 | 4.25| 1.04{ 0.1 i 0.41 15 099 |6 501 1.04 0.85
(Liu Qiu)
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The Step 2 conversion was also based on a linedelnodthe formy=mx+b, with all data
transformed by natural logarithm, in this case \elygs the whole length of the shark,is
the slope of the relationshipjs the wet length of the fin aris the intercept. Consistent
with all steps in Model C, each fin position waseyi a separate base slope and intercept
term. However, in this step, an additive sharkaffvas modelled for each shark type and
fin position separately and these effects term&weosuped within fin positions (i.e. there
was no grouping across fin positions) based onaiitiby intervals and posterior p-value
testing. Lengths and weights in Step 2 were trangtd by natural logarithm in order to

avoid producing negative weight values in the estés.

The probability intervals for the individual shasipe effects for slope and intercept, and
the final groupings, are shown in Figure 2.23.eEf$ estimation was highly constrained
by the number of data points in each group. Camsetly, some groups contain shark
types that are not closely related but cannot stgffect estimation on their own due to a
low sample size. The seemingly inappropriate gmaypf Wu Gu and Liu Qiu pectoral
fins for slope can be explained by their highly isameffects for intercept and a potentially

important, but unaccounted for, interaction betwslepe and intercept in the model.

Examination of posterior p-values for Model C, Pa&tep 2, using the groups shown in
Figure 2.23, revealed that 10 of the 230 data paimulated (4.3%) were significantly
under estimated. Four of these points were Yadiasals, three were caudals (Ya Jian,

Chun Chi and Wu Gu) and three were pectorals (Bag.@nd two Chun Chi).
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Figure 2.23 Probability intervals for individual effects for &tk type on the slope and intercept for

estimating whole shark length from wet fin lengach line represents the 95%

probability intervals; the median is representealppint. Effects were estimated for

1 to (n-1) groups but thé"mroup’s effect was assigned such that the sumi effakts

would equal 1.

The results from Step 2 are predictions of the whehgth of sharks for each shark type.

These results were checked against recorded leaggfes from the literature, where

available, as shown in Table 2.18.
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Table 2.18. Comparison between whole shark lengths (in cm)r allesize classes and fin

positions, generated by Model C, Part 2, Step @ raaximum and minimum
recorded shark lengths from the literature (Fr@eskPauly (2002)). The maximum
from the model is the 97"ercentile of the highest estimate, and the mininisi

the 2.8" percentile of the lowest estimate, among the tfiregositions for the given

shark type.
Shark Minimum | Maximum | Species or Genus Size at | Maximum
Type from from Birth Length
Model Model

Ya Jian | 42 335 Prionace glaucgblue) 40 200-383

Qing 87 435 Isurus oxyrinchugshortfin 60-70 225-364

Lian mako)

Wu 47 462 Carcharhinus falciformis 73-87 308-315

Yang (silky)

HaiHu | 87 301 Carcharhinus obscurus NA 282-365
(dusky)

Bai 74 295 Carcharhinus plumbeus NA 154-300

Qing (sandbar)

Ruan 65 312 Galeocerdo cuvieftiger) 51-104 430-469

Sha

Chun 51 312 Sphyrnaspp.(exceptS. 43-55 160-350

Chi mokarrar) (hammerheads)

Gu Pian| 77 393 Sphyrna mokarraiigreat 56-70 161-348
hammerhead)

Wu Gu | 45 370 Alopiasspp. (threshers) NA 188-276

Sha 95 317 Carcharhinus leucaébull) NA 221-320

Qing

Liu Qiu | 43 289 Carcharhinus longimanus 60-65 270
(oceanic whitetip)

Most model-generated maximum lengths (taken a87t& percentile across all fin

positions and size classes), were within the rafigengths observed in nature.

Exceptions included Qing Lian, Wu Yang, Gu Pian, Bwand Liu Qiu where the

maximum values generated by the model all deriveh fdorsal fin estimates which
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showed the highest coefficients of variation (amtregthree fin positions) in ten of the
eleven shark types. If these high dorsal-basechats are excluded, all maximum
pectoral- and caudal-based estimates fall welliwithe range of observed lengths in
nature except for an 11 cm exceedance for Wu Gamparisons between minimum
lengths are arguably less of a concern since thek $im trade is known to utilize fins
from unborn sharks, thus sharks smaller than tteedt birth may indeed be represented
in the trade. At the low end of the range, Wu Yand Liu Qiu minimum sizes were
lower than the length at birth from the literatuioth of these lengths derived from
individual caudal fin estimators which showed cméhts of variation nearly as high as,
or higher, than the dorsal fin estimates. Whessiinbe, groups were adjusted in an
attempt to improve the estimates, but the reshltisva here represent the best and final

version of the model.

Conversion factors for translating the length dfiad fin to the whole length of the shark
producing that fin are given in Appendix 2. Thésgors were obtained by fixing Model
C to a single size class for each of six model.ruftse results of this analysis revealed
that due to high variability in the caudal fin esditors, caudal fin size class 1 in some
iterations produced anomalous length estimateshwirievented the model from
functioning properly. For this reason, size classaudal-based conversion factors could
not be produced. Biomass estimates based on ciuslare thus known to be under
predicted, subject to the proportion of size clafigs (see Figure 2.17), and treated with

caution.

Overall, the results for whole shark length sugtfest dorsal-based estimates may be

slightly over predicting and caudal-based estimatag be slightly under predicting,

especially at the edges of the parameter probabilitributions. Nevertheless, the
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results provide a reasonably sound basis for estigyahole shark lengths and for

biomass calculations in the next step of the allgori

Model C, Part 2, Step 3 converts each estimatedendi@ark length into an associated
weight using length-weight relationships from thierbture. To avoid parameter bias due
to varying sampling methodology, all relationshigesre taken from Kohler et al. (1995)
which measured and weighed 5,065 sharks from tlséeweNorth Atlantic. The
relationship was given as
W = axFL® (Eq. 2.8)
where

W is the weight in kg,

FL is the fork length in cm, and

a andb are dimensionless parameters,
but this was converted to the linear form:
InW =a+ (b:ln FL) (Eq. 2.9)
for this application. The linear form was convenias the shark whole length data
(based on fork length measurements) output fronmtbéel was already in log space.
However, the most important reason for using thedr form was that since the only
indication of the variance of the relationship inter et al. (1995) was given by the
square of the correlation coefficiemf)( it was necessary to use properties of the linear
regression model to estimate the variance of weajjen length. Starting with the
standard error in the dependent varialfldgased on a given regression model and value

of X:

(x- X)

Eq. 2.10
XX (Eq )

_ ] 1
SY\X_ Sy x E+

the equation was reformulated as
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b%’s2 1. (x- X)
ssz\/(l-rz) = E+£f(n-)2) (Eq. 2.11)

where
b is the slope parameter (given),
r? is the square of the correlation coefficient (giye
n is the number of samples (given),

x is the shark length in a given observation (¢hia case, model iteration),

X is the mean of the observed shark lengths, and

Zjs the variance in the shark lengths.

The latter three parameters were estimated wittémiodel in Step 2 for each shark type

— fin position combination. As the model produestimates of whole shark lengit),

these were stored and used to calculate a méaand a variance?. An alternative
approach of using the mean fork length for eachkstype from Kohler et al. (1995) and
applying maximum likelihood methods to estimatevhdance from the Kohler et al.
(1995) minimum and maximum length sharks was cameitibut not utilized in the
model as it was believed use of these extreme saloeld result in an inappropriately

high variance and hence an overly extended rangesafting shark weights. Therefore,

estimates of shark length from the model itselfevesed as the basis for X and 2

Kohler et al. (1995) provide length-weight relasbips for all but two of the eleven
shark types analysed in this study. Chun Chi ¢lelil to be species of hammerhead)
length-weight relationships were based on the ggall hammerhea&phyrna lewini as
were Gu Pian (believed to be great hammerhead) GW(believed to be species of
thresher) could have been based on either the ditpegsherAlopias superciliosysor

the common thresheAlopias vulpinuy but the bigeye thresher data was selectediss it
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believed to be more abundant worldwide (IUCN 20@@mpagno 2001). In order to
assign the most relevant parameters from Kohlat. €1995) to the two shark types not
covered by the study, Sha Qing (believed to bedhalk), and Liu Qiu (believed to be
oceanic whitetip shark), a range of values forgheameters andb of the length-weight
relationship for bull and oceanic whitetip sharkergvexamined in Fishbase (Froese and
Pauly (2002)) and the most similar parameters fikahler et al. (1995) were selected.
On this basis Sha Qing was estimated using the silerk Carcharhinus falciformip
parameters, and Liu Qiu was estimated using thieydstgark Carcharhinusobscuru}

parameters.

The calculations for Step 3 were implemented withgnmodel in a deterministic manner
to obtain a mean whole shark weight and variancedch shark type — fin position
combination (Figure 2.22). These two variablesenben used as the parameters in a
normal distribution, with an uninformative prior ariance, to generate estimates of
whole shark weight. The results of estimated shagights were then compared to

observed shark weights from the literature (Tabl®p
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Table 2.19 Comparison between whole shark weights (in kg) gged by Model C, Part 2, Step
3 and recorded shark lengths from the literatureg$e and Pauly (2002)). No
minimum weights or weight at birth data were avalda The maximum from the
model is the 97 B percentile of the highest estimate, and the mininmithe 2.5
percentile of the lowest estimate, among the gi& slasses and three fin positions
for the given shark type.

Shark Type Minimum | Maximum | Species or Genus Maximum
from Model | from Weight
Model

Ya Jian 1 258 Prionace glaucgblue) 206

Qing Lian 6 1012 Isurus oxyrinchugshortfin mako) 506

Wu Yang 1 975 Carcharhinus falciformigsilky) 346

Hai Hu 8 253 Carcharhinus obscuru&lusky) 347

Bai Qing 5 301 Carcharhinus plumbeusandbar) 118

Ruan Sha 2 351 Galeocerdo cuvieftiger) 807

Chun Chi 1 356 Sphyrnaspp.(exceptS. mokarrah 400
(hammerheads)

Gu Pian 5 711 Sphyrna mokarrafigreat 450
hammerhead)

Wu Gu 1 798 Alopiasspp. (threshers) 364

Sha Qing 9 319 Carcharhinus leucagbull) 317

Liu Qiu 1 233 Carcharhinus longimanugceanic 167
whitetip)

As in Step 2, all problematic weights promptedteospective examination of all Model
C parameters for that shark type — fin position simation and parameter adjustments
were implemented if the estimation could be imptbv&ince these biomass estimates
are based primarily on the length estimates predemtove, the same patterns in the
results are evident. In some cases, outliers\ae more extreme due to the additional
variance incorporated in the biomass calculatigiany of the estimated shark weights in
Table 2.19 exceed the maximum values from theglitee, and some are up to 2 times
higher. However, as shown in Appendix 2, whichsprés conversion factors for each

shark type, fin position and size class combinatibe enormous biomass estimates
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shown in Table 2.19 occur only for size class Gdbbased estimates which have a high
variance. Most biomass estimates for pectoral-candial- based estimates fall within
the observed range. Again echoing a pattern invtiwe shark length results, a bias

toward under prediction in the caudal-based esématapparent.

The final step in Model C, Part 2 was Step 4 wisichply multiplied the biomass
estimate for a single shark from each shark tyfie position combination by the number
of sharks estimated in Model C, Part 1. This pobdwhen estimated under Monte Carlo
iteration should converge to a stable distributibthe total shark biomass in each
combination represented each year in the Hong Isbiagk fin auctions (Table 2.20.) In
some cases, a high degree of variability betwetmates based on different fin positions
is apparent and derives from the compounding admpater uncertainty through
numerous steps in the algorithm. The greater nuwibeonversion steps necessary to
produce the biomass estimates, as opposed totthmts of number of sharks,
introduces considerably more uncertainty into #sults. For reasons stated above, the
caudal-based biomass results are believed to ixepnatic due to under estimation of
shark weights and thus under estimation of totainaiss for some shark types,

particularly at small fin sizes.

These stochastic estimates of biomass per yearsemed in the Hong Kong auctions are
contrasted with a deterministic estimate for edwdrlstype — fin position combination in
Figure 2.24. The deterministic estimates werevedrfrom multiplying each fin size

class midpoint (Table 2.9) by a maximum likelihcesimator of the slope and intercept
for dry to wet fin length based on data in Fongd@)%and a maximum likelihood

estimator of slope and intercept for fin lengtishark length based on the Taiwan dataset

(Table 2.17). The resulting shark lengths for datkize class for each combination
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Table 2.20 Medians and 95% probability intervals (in parendsdor total shark biomass (mt)

per year for the eleven studied shark type categdny shark type and fin position.

Trader's Market | Dorsal Fins Pectoral Fins Caudal Fins
Category

Ya Jian 33,133 23,687 19,067
(7,180 to 159,533) (7,600 to 76,267 (4,641 to 67,600
Qing Lian 4,991 4,795 2,232
(1,031 to 25,507) (1,099 to 21,420 (666 to 7,853)
Wu Yang 6,807 4,929 3,853
(1,482 to 30,560 (1,716 to 14,527 (1,278 to 11,760
Hai Hu 933 1,790 2,071
(204 to 3,840) (645 to 4,846) (737 to 6,305)
Bai Qing 2,381 3,113 4,717
(498 to 11,193 (1,048 to 9,287 (1,535 to 15,213
Ruan Sha 78 152 199
(13 to 459) (43 to 523) (52 to 845)
Chun Chi 5,447 5,692 6,673
(1,131 t0 29,513) (1,375 to 24,780 (2,017 to 21,567
Gu Pian 1,998 2,588 2,484
(398 to 11,480 (601 to 11,413 (783 to 7,980)
Wu Gu 7,613 2,461 5,491
(1,775 to 34,580 (376 to 15,353 (1,548 to 17,053
Sha Qing 2,111 2,455 4,565
(443 to 9,653) (853 to 7,207) (1,577 to 13,880
Liu Qiu 1,123 1,997 1,380
(263 to 4,532) (385 to 9,613) (477 to 4,177)
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were converted to shark weights using equatiot@lmer et al. (1995) and multiplied by

the deterministic estimate of number of sharksegoresl in the previous section.

Similar to the pattern observed in the comparisasedd on number of sharks, the
Bayesian posterior medians are often higher tham¢terministic estimates, and in a
greater number of cases (10 of 33) the Bayesiateposprobability interval does not
overlap with the deterministic estimate. Theserdisancies are likely to arise from
differences in traded fin weights, for exampleha tase of Bai Qing and Sha Qing
caudals, or due to the conversion factors themsétvene or more of the algorithm
steps. The probability intervals are of genersilgilar widths across fin positions and
shark types, although the largest discrepanciegdast Bayesian and deterministic

estimates occur in caudal fins.

Estimates of total biomass in the eleven studiedkstypes summed over all shark types
for each fin position are presented and contrastddeterministic estimates of the same
guantities in Table 2.21. Similar to the resuttisifumber, the Bayesian posterior median
estimates are larger than the deterministic eséispdtut in this case all of the Bayesian
posterior probability intervals contain the deteristic estimates. The higher Bayesian
median estimates may be due to use of the log nalistabution, which is characterized
by a long tail of high values, at several stepladel C. The values based on a
combination of all fin types are biased upwardHty high biomass estimates for dorsal
fins, which in turn originate from high estimatdsradividual shark weights based on
dorsal fins (as discussed above in connection Wathle 2.19). Caudal-based estimates
for the median and the 2'percentile are lower than the other two fin posisi due to

the under prediction bias identified above.
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Table 2.21 Composite estimates of biomass (mt) representeggagrin the Hong Kong auction

data for all of the eleven studied shark types doeth

Based on Deterministic] Median 28 97.8"

Percentile Percentile
Dorsal 38,243 75,590 21,810 271,100
Pectoral 30,607 61,950 25,690 153,000
Caudal 35,518 56,05 18,820 167,900
All fin positions 34,788 69,680 33,100 158,400

2.6 Conclusions

2.6.1 Summary of Main Findings and Model Performance

This chapter has described the formulation of p-gtise Bayesian model which uses

available trade data from Hong Kong shark fin aurdito fill missing records, generate a

complete data set and then convert traded fin ieighestimates of shark numbers and

biomass. The algorithm for the data imputation @éls A and B) produced estimates of

total traded weight for each of 11 shark typesfifbyposition (dorsal, pectoral, caudal or

other/unspecified). These traded fin weight esmaeveal that 52 to 56% of the shark

fins auctioned during the study period of Octo@®9.and March 2001 were not

described by shark type, and thus there is no Waleatifying which sharks were

utilized to produce these fins. The largest portibidentified traded fins, 17 to 20%,

were identified as Ya Jian (believed to be bluglsHrionace glaucawhile all other

identified shark types comprised 5% or less ofttial traded weight. Of these less

common shark types, the most abundant were Chu(b€leved to be hammerhead,

Sphyrnaspp.) and Wu Yang (believed to be silky sh&archarhinus falciformis The

overall estimate of auctioned fin weights per ywas between 1,108 and 1,247 mt.
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These multiple imputation models utilized diffusermally distributed prior distributions
and the underlying data were numerous and representicross categories of interest
(n=7,104), therefore, the model results were styoddven by the data and were not
overly sensitive to specification of priors. Postep-values were employed to assess the
performance of the models against actual data ¢gffreimulation exercises. These trials
suggest that missing data were under predictegs@lbcategories of shark type and fin
position by approximately 9%. Given that the datadistributed according to an
approximate negative binomial distribution, andthres heavily influenced by outliers in
the tail of the distribution, this degree of ungegdiction is considered acceptable, and
was corrected through scaling before the resulte wpplied in subsequent portions of
the model. A comparison between modelled estinatéaded weights and simple
deterministic calculations showed a high correspand between estimates for the
majority of shark type — fin position combinatioriBhe most erratic estimates were
obtained for Ya Jian fins, but this is likely to &éunction of the large quantity of fins
auctioned in the Ya Jian category. Despite disunejes observed for some
combinations, an overall correspondence of 1: @966the ratio of deterministic to

Bayesian estimates for the sum of all traded wsiglats observed.

The subsequent model components (Model C) useadierar models to transform the
estimates of traded fin weights into shark numioer l@iomass equivalencies. Median
estimates for the total number of sharks in theelestudied shark type categories, were
formulated separately for dorsal, pectoral and akfids, and ranged from 1.4 to 3.5
million sharks per year with a 95% probability i@l of 0.8 to 19.9 million sharks per
year. Much of the variability in these estimateassociated with the estimate of Ya Jian
numbers based on caudal fins which in itself digpka95% probability interval of 0.2 to
17 million sharks per year. The variability ingkistimate reflects an overall trend of

higher variances in caudal fin based estimatespooamded by a relatively higher number
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of Ya Jian fins in trade. Deterministic estimatéshe total number of sharks represented
per year in each of the eleven identified marketgaries lie within the 95% Bayesian
posterior probability intervals in most cases. égences mainly occurred for caudal
fins, and sometimes could also be traced backviergiences between the Bayesian and
deterministic estimates for traded weight (i.e. Eldgl). Deterministic estimates for Ya
Jian dorsals, pectorals and caudals overlappeBaiesian probability intervals but the
Bayesian posterior medians were substantially ifgreboth dorsal and caudal fins
(980,000 versus 711,000 and 1,638,000 versus 372e8Pectively). When summed by
fin position for all sharks, Bayesian estimatesen@gher than the deterministic estimates

due to high median estimates for some shark typgsding Ya Jian.

Estimates of total shark biomass demonstrate degrizetk of coherence between
deterministic and Bayesian estimates possibly dustpounding of uncertainty over
several conversion steps. When biomass is sumgnéd position over all eleven
studied shark types, deterministic estimates libiwithe 95% Bayesian probability
interval. However, Bayesian medians are approxma0% higher than the
deterministic estimates, and the 95% Bayesian fitityainterval for total biomass per
year in the eleven categories based on all finstgoenbined ranges from 33 to 158 mt

per year, compared to 30 to 38 mt per year fod#terministic estimates.

The Bayesian modelling techniques applied in M&alakcount for the variance
associated with several highly uncertain conversteps. As in Models A and B, Model
C parameters were based on uninformative, nornaidlyibuted priors, but in Model C
the likelihood function derived from generally sirddta sets sourced from the literature
or based on empirical observations. Simulatioaacbdfial data was undertaken at each
step to ensure estimated parameters would residasonable values with adequate

predictive power for the models. As qualitative $ize class data were converted to fin
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lengths and weights, and whole shark lengths anghig the resulting fin weights, shark
weights and shark lengths were compared to obsemaleds in empirical data or the

literature and were found to be realistic in mases.

Problematic estimators were identified for dorsad aaudal fins in some steps. Caudal
fins in the shark fin trade are known to have aalde morphology due to differences in
fin removal techniques and this is likely to coodrtie to the higher variability in fin
length-weight relationships. Over estimation basediorsal fin estimators was apparent
in the conversions to whole length and biomassjyming unrealistic estimates for
larger-sized fins. Further work is required to e the conversion factors for caudal
and dorsal fins, and pending such work, estimaasedh on these fin types should be

treated with caution.

2.6.2 Applicability of Methods to Other Traded Wildlife

The benefits of this type of Bayesian data fillaogd modelling approach derive from its
hierarchical model structure and its explicit irmmration of uncertainty. When data are
lacking, the approach draws predictive power framhierarchical data structure
allowing well-characterized categories to informegictions of under represented
categories. Using a statistical distribution, eatthan a point estimate, in each step of the
algorithm enables this approach to report resulis associated probability intervals.
Although some estimates are highly uncertain, aag be disconcerting to audiences
accustomed to falsely precise point estimatesaltiléy to quantify probability intervals

is considered a major strength of this type of meétthogy. Probability intervals should
ultimately facilitate policy decisions, especialifere it is desirable to communicate not
only the best estimate of resource utilization,dsb the lower and upper levels at which

it may be occurring.
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The specific algorithm developed for this study pesvided insight into the current
characteristics of the Hong Kong shark fin trade ean serve as basis for monitoring this
trade in the future should new auction records tmecavailable. The algorithm can also
be modified to suit other types of data sets odelawildlife which contain weights or
volumes, some indication of product size, and fhiclv reasonable conversion factors
exist or can be estimated. As this approach iraratps measures of uncertainty, it is not
necessary to postpone modelling until robust detalsave been gathered and validated.
Instead, as long as there is sufficient confidengeeliminary estimates based on limited
data or even expert judgement, models can be osgeherate meaningful estimates

which can be further refined as better data setsrhe available.

Species information, or its proxy such as shark ipgthis analysis, can be incorporated
in the models if available, but this is not necegsa long as the intended conversion
factors can be reasonably assumed to apply toadugts in the data set (e.g. uncarved
elephant ivory where tusk dimensions would be etqubto be similar regardless of the
source population (Milner-Gulland and Mace 199)hile species information is thus
not essential for the algorithm, in applicationsanéhonly some species are of interest, for
example the caviar trade (Birstein et al. 1998) withale meat market (Baker et al. 2000),
or hunting of certain species of wild pigs (Milm@land and Clayton 2002), the results
will not be useful for decision-making unless tloey be taxonomically partitioned. This
type of information may be available in trade reisoin the form of market names,
although special studies may be necessary to radp trames to their taxonomic matches
(see Chapter 3). If products are wholly undifféieed (e.g. sold under a common trade
name), it may be possible to identify distinguishainaracters and perform representative

sampling of products to estimate species compaositio
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Models such as those described in this chaptevatiaximal use of trade data sets in
understanding the potential extraction rates faded wildlife, and represent an
improvement over past practices involving tallyadsting data and extrapolating using
means. Nevertheless, it is important to acknowddtigt in many potential applications,
the feasibility of using models such as these ttebenderstand wildlife exploitation
rates will be constrained more by the ability téaith meaningful data than by the
limitations associated with any particular analgtiechnique. Therefore, methodologies
for data gathering and data analysis must be ggeal attention as the strengths of one

cannot fully compensate for inherent weaknessésamther.

2.6.3 Use of Hong Kong Auction Data in Estimating thelgalioTrade

This analysis has provided estimates of the nurabdriomass of sharks represented for
eleven specific shark type categories in the Hooggd<auction data. The following
chapter presents the results of a molecular gestetity mapping these eleven categories
to specific shark taxa, and adjusts the estimatésa eleven categories so that they
represent particular species or genera of shatlksvever, these adjusted estimates still
represent only a fraction of the global shark fade and must be extrapolated from the
auction data set to worldwide totals. Datasetsemstimptions necessary to support these
extrapolations are described in Chapter 4. Intamdio presenting extrapolated figures,
Chapter 4 compares these figures to global shack ssatistics, and to an estimate of the

global maximum sustainable yield for blue shark.
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