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2 Estimation of the Number and Biomass of Sharks 
represented in the Hong Kong Fin Trade 

 

2.1 Overview and Purpose 

Much of the current concern regarding the sustainable utilization of shark resources 

centres on the practice of finning and the role of the shark fin trade in driving shark 

mortality.  In the absence of extensive and reliable species-specific shark catch statistics 

(see Chapter 1), market data can be used to assess the numbers of sharks represented by 

traded quantities of shark fin, and to identify the proportions of various types of fins in 

trade.  Estimates of shark numbers or biomass generated from fin trade-based studies can 

also provide useful reference points against which to evaluate reported shark catch rates.  

In these ways, shark fin market data can contribute to a better understanding of shark 

exploitation rates and provide useful insights into the current pressures facing world shark 

populations.  Once developed, similar methods can also be applied to other marine or 

wildlife species of concern.   

 

This chapter describes a probabilistic approach to data-filling (imputation) and modelling 

shark fin trade data and demonstrates how this approach can be used to derive estimates 

of total traded fin weights, as well as shark numbers and biomass.  The chapter begins 

with a description of Hong Kong auction records which form the basis for this study.  

Since some of the records provide incomplete information, the first step in the analysis is 

to apply imputation methods to generate missing data and simulate a complete data set for 

all observed auctions (Model A).  A second imputation step uses the completed auction 

records to estimate traded weights of shark fins at all other, unobserved, auctions (Model 

B).  Results are tallied to form a comprehensive record of traded weights in each of 

eleven studied market categories for a one-year period.  A third step applies empirical and 
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literature-based conversion factors to translate traded weights into equivalent numbers 

and whole weights of sharks (Model C).  The estimates generated in this chapter are 

combined with molecular genetic testing results in Chapter 3 to produce estimates of 

traded weight, number and biomass that are specific to individual taxa.  In Chapter 4, the 

estimates produced here for the Hong Kong auction trade are extrapolated to the global 

trade, and the implications for shark populations are discussed.   

 

2.2 Description and Exploratory Analysis of Hong Kong Auction 

Data 

2.2.1 Description of Hong Kong Auction Data 

The trade in unprocessed shark fins through Hong Kong follows one of two pathways:  

imported fins may be sold by Hong Kong wholesalers to representatives of Mainland 

China-based processing factories under private contracts, or fins may be offered for sale 

at Hong Kong auctions.  The proportion of fins auctioned rather than sold privately in 

Hong Kong is unknown even to traders themselves and is not available from any existing 

data source.  Auctions are organized by the Hong Kong Shark Fin Merchant’s 

Association and usually held year-round, six days per week, at one of 16 trading 

warehouses run by participating dealers.  Generally, only one auction is held per day, 

although on occasion there are two auctions held consecutively on one day.  High-volume 

traders may auction as frequently as once per week, whereas low-volume traders may 

only auction a few times per year.  The auction schedule is known only to association 

members and auctions are generally closed to the public.  I was able to attend 17 auctions 
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between December 2000 and March 20011 and to understand how the system operates.  

At each auction, lists of lots to be bid upon are distributed to each attendee (Figure 2.1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Example of Hong Kong shark fin auction sheet showing 23 lots.  ‘Price’ is in units of 

100 catties (1 catty = 604.79 g).  ‘Bags’ is the number of burlap or plastic sacks in the 

lot.  ‘Weight’ is the total weight of the lot in catties.   

 

As it is important for buyers to ensure that all fins within a lot will produce a similar 

grade product, the veracity of the lot descriptions are checked by potential buyers when 

the bags comprising the lot are opened onto the floor for inspection.  These records are 

                                                      

1 On 16 March 2001, in response to a shark conservation campaign launched that week in Hong 
Kong, I was expelled from the daily auction and barred from attending any further auctions. 

Trader 

Bags   Weight Price Price 
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annotated after the auction by the Shark Fin Trade Merchants Association secretary to 

show the total weight of the lot and the official selling price, but these annotated records 

are circulated only to a select group of traders.  I was able to obtain 148 annotated auction 

records from a confidential source and to translate and digitize 10,669 lot records 

spanning the period 13 October 1999 to 23 February 2001.   

 

The auction records describe shark type using over 70 Chinese names or combinations of 

names.  These names were Romanized using the pinyin system employed by the United 

Nations to transcribe Chinese for the Latin alphabet.  Based on the frequency of 

occurrence in the auction records, and on the availability of molecular genetic primers for 

the analysis described in Chapter 3 (see Table 3.1), eleven Chinese trade names for sharks 

were selected for study (Table 2.1).  These studied trade categories in total comprised 

approximately 50% of the lots.  Other Chinese trade name categories were entered, but 

then grouped into an ‘other’ category for analysis.  Table 2.1 lists the most commonly 

auctioned (>1% of all lots) ‘other’ shark types and provides available information on their 

potential taxonomic identity.   

 

Most lot descriptions also contained a reference to the fin position.  The most common fin 

positions recorded were dorsal (
�

 – ‘zhi’), pectoral (� – ‘pian’), and lower caudal (�  – 

‘gou’); other less common fin positions included upper caudal or whole tail (�  – ‘mao’), 

anal, pelvic or second dorsal (�  – ‘bi’), and unspecified (�  – ‘chi’).  After initial data 

entry of fin position details, lots were coded as being dorsal, pectoral, lower caudal or 

other.  Lot descriptions also usually described the size of the fins being offered, and 

sometimes used the term � �  (‘jin shan’), the Chinese name for San Francisco (‘gold 

mountain’) to indicate that the fin was well-cut and free of any attached muscle tissue that 

could cause spoilage.  Fin sizes were specified within a qualitative system which operates  
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Table 2.1  Chinese character and Romanized trade names for shark type and the proportion of lots 

described using these names.   

Chinese 

Name 

Pinyin 

Romanization 

Percent of Total 

Number of Lots 

(n=10,669) 

Described Using 

this Name (%) 

Taxonomic Identity Selected for 

Modelling 

Study? 

� �

 Ya Jian (YJ) 13.4 Yes 

� �

 Qing Lian 

(QL) 

3.0 Yes 

�

�

 Wu Yang 

(WY) 

8.8 Yes 

�
�

 Hai Hu (HH) 1.7 Yes 

�
�

 Bai Qing (BQ) 2.4 Yes 

	


 Ruan Sha (RS) 0.4 Yes 

�

�  Chun Chi (CC) 8.7 Yes 

�

�  Gu Pian (GP) 1.9 Yes 




�

 Wu Gu (WG) 2.5 Yes 


�

 Sha Qing (SQ) 2.6 Yes 

�
�

 Liu Qiu (LQ) 4.1 

see Table 3.2 

 

Yes 

�
�

�  
 

Shenme Chi 26.1 lit. ‘mixed’ fins; a label for 
unidentified fins 

No 

�

�

�

 Ke Wei Qing 12.8 a label for blacktip fins; 
potentially many shark 
species included 

No 

�

 Qun 3.1 believed to refer to 
guitarfish 

No 

�
�

 Zhen Zhu 2.1 lit. ‘pearl’, a dorso-
ventrally flattened shark (or 
fish) with bubble-like skin 
surface 

No 

�
�

 Bai Chan 1.0 lit. ‘white cicada’; fin 
resembles the shape of a 
butterfly wing 

No 

 

on a relative scale using approximately 15 categories from small (�  – ‘xiao’) to triple 

supreme (��  – ‘san ding’).  For example, a ‘san ding’ dorsal fin would not be the same 

length as a ‘san ding’ pectoral fin, since pectoral fins are usually longer than dorsal fins.  
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Similarly, a ‘san ding’ pectoral fin for one shark type might be shorter or longer than a 

‘san ding’ fin for another shark type (e.g. blue sharks and threshers have considerably 

longer pectoral fins).  Once the Chinese sizes had been digitized, size data were recoded 

into six numerical classes as follows:  1) ‘xiao’ (small) �  and � � ; 2) ‘zhong’ 

(medium) �  and � � ; 3) ‘da’ (large) �  and � � ; 4) ‘te’ (special) � �  and � ; 5) 

‘chao’ (super) �� , � , � �  and �� ; and 6) ‘ding’ (supreme) � , � �  and � � .  

Chinese fin sizes were recoded and grouped because there appeared to be minor and 

variable differences between some of the adjoining categories, and organizing sizes into a 

smaller number of categories by the key characters above provided a clearer basis for 

assigning actual lengths in centimetres (see Table 2.9).   

 

Some of the auction records did not contain a complete set of data for each lot.  Lots for 

which shark type was not specified were recorded as ‘other’; missing fin position 

information also necessitated recording ‘other’ for fin position.  The ‘other’ designation 

therefore was used instead of a blank to record the presence of fins of unknown shark 

type or fin position that were still intended to be used in the modelling.  In contrast, if size 

information was not available, the fields were simply left blank indicating that size 

information would be excluded from the analysis.  All auction records contained data on 

the number of bags in each lot, but a number of records, particularly from certain traders, 

did not contain the annotated information on total lot weight or price.   

 

In order to understand what proportion of all auctions held during this period were 

represented in the available records, an auction calendar was compiled from October 

1999 through March 2001 from a second confidential source2.  This calendar dataset 

                                                      

2 I compiled the auction calendar by examining a complete collection of photocopied auction 
records.  This set matched my subset of auction records thereby cross-validating the two sources.   
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provides the date and the name of the trading house for each auction held during the  

18 month period, and reveals there were 513 auctions in all (Table 2.2).  The available 

auction records therefore represent nearly 29% of all auctions.   

Table 2.2  Traders holding auctions between 1 October 1999 and 31 March 2002.  Trader name 

abbreviations are based on Romanized spelling used by the traders themselves 

(Cantonese phonetics).  The last column indicates whether lot weights are provided by 

the trader on the available auction records.   

Trader Name Number of 

Observed 

Auctions (n=148) 

Number of 

Unobserved 

Auctions (n=365) 

Total Number of 

Auctions Held 

(n=513) 

Annotated 

Lot Weights? 

CH 8 10 18 Yes 

HY 2 4 6 Yes 

KC 35 112 147 Yes 

KCL 1 2 3 Yes 

KL 2 4 6 Yes 

LT 5 15 20 Yes 

MT 2 6 8 No 

SFC 13 21 34 Yes 

SH 7 11 18 Yes 

SS 6 20 26 Yes 

SY 18 35 53 Yes 

TH 16 31 47 Usually 

TL 13 27 40 Yes 

TS 1 4 5 Yes 

TT 1 10 11 Yes 

YT 18 53 71 No 

 

2.2.2 Exploratory Data Analysis 

Exploratory analysis of the auction data set was conducted to identify potential functional 

relationships between variables and assist in formulating appropriate models.  Since the 

variable of interest was lot weight, and the most closely related variable was number of 

bags in the lots, data were plotted to illustrate the 10th, 50th and 90th percentiles of lot 

weights against the number of bags in the lot (Figure 2.2a).  Observed higher variability 
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in lot weight at higher numbers of bags was reduced when weight data were transformed 

using the natural logarithm (Figure 2.2b).   

 

 

Figure 2.2   Plots of observed lot weight a) untransformed and b) transformed by natural logarithm 

against the number of bags per lot.  Outliers have been removed from a) for illustration 

purposes but values are annotated for reference.   

 

The natural logarithm transformation was also applied in further plotting of lot weight in 

catties against trader, shark type, fin position, fin size and date (Figure 2.3).   
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Figure 2.3  Plots of 10th ( � ), 50th ( � ) and 90th ( � ) percentiles of observed lot weight transformed by 

natural logarithm against potential covariates.   
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These plots reveal that lot weight does not vary with fin size and date, but trader, shark 

type and fin position factors should be taken into account when estimating lot weight.  

The patterns in lot weight by trader are believed to arise from differing degrees of sorting 

such that traders who sort fins into a large number of categories would have smaller lot 

weights.  Patterns in weight by shark type may reflect relative abundance:  traders claim 

that Ya Jian fins are common (Parry-Jones 1996) and this may explain why Ya Jian and 

other abundant shark types, when grouped together for sale at auction, form larger lots.  

Patterns in fin position can be explained by the fact that each shark produces two pectoral 

fins, but only one dorsal or caudal, and thus pectoral lot weights would be expected to be 

higher.  Potential interactions between factors, though not shown in Figure 2.3, were 

examined and incorporated where appropriate in the modelling described below.   

 

2.3 Modelling Objectives and Selection of Methods 

The objective of the modelling exercise described in this chapter is to use available Hong 

Kong auction records containing information on shark type, fin position and fin size of 

traded fins to estimate the number and biomass of sharks represented in the Hong Kong 

auctions.  A complete set of Hong Kong auction records would allow the shark fin market 

to be characterized at a level of detail never previously achieved.  However, the available 

auction data set is missing key data on lot weights for some records, and in total 

represents only 29% of all auctions conducted during the study period.  Modelling of 

available records must address both of these data shortcomings in order to produce a 

complete characterization of traded quantities.   

 

Three models were envisaged (Figure 2.4).  Model A uses the relationship between the 

number of bags in the lot and the lot weight for those records where both data were 
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disclosed, to predict the lot weight for records that only revealed the number of bags in 

the lot.  These results provide a complete set of data for all observed auctions for each 

shark type-fin position combination.  Model B uses the traded weight for each shark type-

fin position combination in each observed auction (including those supplied by Model A) 

as the basis for predicting analogous traded weights in unobserved auctions.  Model C 

sums the observed (Model A) and predicted (Model B) auction weights for each shark 

type-fin position combination and converts them to number, and whole weight, of sharks.   

 

The simplest approach to this problem would involve calculating the means for each 

shark type-fin position combination and using them to fill all of the missing records.  This 

approach, however, would not account for uncertainty or variability in the data since the 

distribution of each shark type-fin position combination’s data would be reduced to a 

single mean.  Furthermore, this mean would only be an unbiased estimate if the sample 

size was sufficiently high, there were no interactions in the data, and the sampling design 

was balanced.  Since the same mean would be used repeatedly for all unobserved 

auctions, it would be difficult to calculate a meaningful confidence interval around the 

resulting sum of observed and predicted values, thus limiting the interpretation and value 

of this estimate.   

 

A more sophisticated approach would involve the use of bootstrapping techniques to 

estimate parameters of interest, such as means and confidence intervals (Haddon 2001).  

This technique resamples with replacement from the sample population and is 

advantageous because it can produce unbiased estimates of confidence intervals even 

when the underlying distribution is non-normal.  Bootstrapping can be used for estimating 

parameters from sample populations (e.g. fully observed shark type-fin position 

combinations) but Monte Carlo methods are necessary when the method requires re-

sampling from probability density functions rather than empirical data (Haddon 2001).   
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Another approach involves Bayesian methods based on Bayes theorem:   

)(

)()(
)(

xP

PxP
xP

qq
q

×
=       (Eq. 2.1) 

which holds that the probability of a specific value of the parameter q given the data 

( )( xP q , i.e. the posterior) is proportional to the probability of obtaining the data given 

the parameter value ( )( qxP ), multiplied by an independent probability for the parameter 

value ( )(qP , i.e. the prior), divided by the probability of obtaining the data ( )(xP ).  

This probabilistic, or Bayesian, approach has several beneficial features.  First, it allows 

parameters to be treated as random variables from any known statistical distribution 

rather than as fixed values.  Bayesian methods thus explicitly account for uncertainty in 

each step of the statistical modelling (Ellison 1996).  Secondly, the resulting parameter 

distribution, called a posterior probability density, represents the probability that the value 

of the parameter is true rather than the probability of observing data given a specific value 

for a parameter, as in frequentist statistics (Wade 2000).  Thirdly, although Bayesian 

statistics have been criticized for the fact that specification of priors can introduce 

unnecessary subjectivity to the analysis (Dennis 1996), this concern is less important in 

cases such as the shark fin auction records where the dataset is large and detailed, and 

uninformative (i.e. diffuse) priors can be used without constraining the analysis.   

 

The use of Bayesian methods for data imputation is a powerful, but under-utilized, tool 

for dealing with missing data.  One of the most accepted methods, multiple imputation, 

can be implemented in either Bayesian or non-Bayesian forms and involves iteratively 

simulating missing observations under a predictive model.  The results are then combined 

to provide a single inference about the parameter of interest while factoring in uncertainty 

due to missing data (Little and Rubin 1987, Rubin 1996, Zhou et al. 2001).   
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The multiple imputation framework involves specifying two components:  the pattern of 

missing observations and the model for predicting missing data points.  The pattern of 

missing observations may fall within one of three general categories, and must be 

specified carefully (Heitjan 1997).  Data which are ‘missing completely at random’ 

(MCAR) would not be expected to show any pattern between the probability that an item 

is missing and any observed values (or the missing value itself).  In fact, if data are 

MCAR, multiple imputation is not necessary since use of only the complete records 

should give an unbiased estimate of the parameter of interest.  Taking the shark fin 

auction data as an example, the MCAR pattern is not applicable because the missing lot 

weights occur in the records of certain traders and not at random.  The second pattern of 

missing data, entitled ‘missing at random’ (MAR), exists when the probability that the 

data are missing is related to an observed parameter but not to the missing value itself.  In 

the shark fin auction example, the data are considered to be MAR since the probability 

that lot weights are missing is related to trader, and not a reflection of a bias against 

reporting particularly high or low lot weights.  The third pattern of missing data is 

referred to as ‘non-ignorable’.  Missing data are considered non-ignorable when the 

probability of being missing is correlated with the unobserved value of the missing item 

itself, for example, all of the missing lot weights are large lots for which traders were 

hesitant to disclose details.  When the parameter of interest is non-ignorable it must be 

modelled explicitly so that its value is conditional on the relevant covariates of interest 

(Best et al. 1996a).  This study’s missing data followed a ‘missing at random’ (MAR) 

pattern and thus met the assumptions of many of the multiple imputation procedures 

currently in use (Heitjan 1997).   

 

The second component of the multiple imputation framework, specification of the model, 

was implemented using a Bayesian approach.  Simulated missing values for missing lot 
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weights, W, based on observed lot weights, X, were given by the predictive distribution 

for W given X:   

( ) ( ) ( ) qqq dXpXWpXWp �= ,      (Eq. 2.2) 

where q  represents the parameter or parameters governing the relationship between W 

and X.   

 

This foundation for the model was then developed into a Bayesian hierarchical modelling 

framework reflecting the various levels of aggregation or hierarchies (i.e. lot weight, 

auction weight, total traded weight over the period of interest) in the data.  Hierarchical 

models derive power from the ability to directly relate parameters at lower levels of 

aggregation to those at higher levels and thereby mine the data as well as the data 

structure for relationships that inform the model estimation.  A Bayesian form of this 

model specifies conditional relationships between parameters based on the hierarchy 

inherent in the data (Gelman et al. 1995, Congdon 2001, Gill 2002).  In the case of the 

auction data, a hierarchical model assumes that the mean traded weight of, for example, 

Ya Jian fins in a number of auctions held by a single trader are drawn from an underlying 

distribution of mean Ya Jian weights for that trader.  Similarly, at a higher level of 

aggregation, the mean weight of Ya Jian fins auctioned by each trader can also be 

assumed to be governed by an underlying distribution of mean Ya Jian weights across 

traders.  At an even higher level, mean Ya Jian weights across traders can be thought of 

as deriving from a distribution of mean weights across all shark types.   

 

Until recently, the application of Bayesian methods has been limited by the 

computationally intensive nature of the modelling (McAllister and Kirkwood 1998).  

Advances in processor speed, and the development of software packages providing 

graphic user interfaces for specifying, executing and evaluating models, have resulted in a 
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recent increase in the application of Bayesian methods.  Given that these methods are 

both accessible and provide high statistical rigour, a Bayesian multiple imputation 

hierarchical framework was selected for the modelling.  Data were formatted in Excel 

spreadsheets and models were formulated using WinBUGS (Bayesian inference Using 

Gibbs Sampling) software, version 1.3 and checked using CODA (Convergence 

Diagnostic and Output Analysis) software (http://www.mrc-bsu.cam.ac.uk/bugs).   

 

2.4 Bayesian Imputation of Auction Records (Models A and B) 

2.4.1 Structure of Model A 

The purpose of Model A is to predict missing lot weights from observed numbers of bags 

in the lots using posterior predictive distributions (Eq. 2.2).  Although there were 10,669 

individual lot records, in the hierarchical model framework the unit of interest was the 

weight of all lots for each shark type and fin position in a given auction.  This total weight 

can be summed for all complete records, but must be approximated for records lacking 

weight data.  Missing data points can be approximated by a prediction of the mean lot 

weight for each shark type and fin position based on complete records, multiplied by the 

known number of lots, plus a normally distributed random error term to account for 

uncertainty in the value of each of the missing data points.  However, care is required in 

quantifying the uncertainty in the resulting estimate of total weight per auction when the 

estimated mean is used as the input data (see below).   

 

In order to predict mean lot weight for incomplete records, available data on lot weight 

and number of bags per lot were averaged for each auction by the twelve shark types 

(Table 2.1) and four fin positions.  This resulted in 1,980 mean lot weights and 1,980 

mean number of bags per lot each representing a unique combination of shark type, fin 
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position and auction (Figure 2.4).  An additional 313 incomplete records were described 

by shark type, fin position, auction and number of bags in the lot, but were lacking any 

data on lot weight.  Of the 7,104 possible combinations of shark type, fin position and 

auction, 4,811 were zeros (i.e. no fins observed).  Mean lot weight plotted against mean 

number of bags in the lot for each auction by shark type and fin position was best fit by a 

linear relationship of the form bmxy += , particularly when the relatively small number 

of large lot weights were excluded (Figure 2.5).   

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Plot of mean lot weight against number of bags per lot.  Each data point represents a 

shark type-fin position combination for which fins were observed at a given auction.  

Outliers (mean number of bags per lot > 10) have been removed for presentation only 

(i.e. not from the model).   

 

The relationship between mean lot weight and mean number of bags per lot varied based 

on both shark type and fin type (Figure 2.6).  This variation indicated that effect terms for 

slope and intercept (i.e. offsets from a base slope and intercept estimated from all data 

points) should be specified for each shark type or fin position in order to inform the 

model structure.   
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Figure 2.6  Maximum likelihood-based linear trend lines showing the relationship between mean 

lot weight and mean number of bags per lot by shark type (a) and fin position (b) based 

on data in Figure 2.5 (n=1,980 in each plot; data points removed for clarity).  Shark 

type abbreviations follow the conventions in Table 2.1.  Trend lines would in theory 

pass through the origin but in this plot they extend toward the intercept only as far as 

supported by the data.  Outliers have been removed for presentation only (i.e. not from 

the model).  Since slopes and intercepts vary by shark type and fin type, Model A 

specifies effects terms for each shark type and fin type which account for the offsets 

from the base slope and intercept estimated from all data points in aggregate.   
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Given the potential effect due to trader illustrated in Figure 2.3, a trader effect on slope 

and intercept was also considered for Model A.  However, due to the absence of lot 

weight information for all of the records from two of the traders (Table 2.1), and given 

that these two trader’s auctions comprised over 90% of the missing lot weight values, a 

trader effect could not be implemented for these traders and was thus considered 

unnecessary in Model A.   

 

Model A uses the following algorithm to predict missing mean lot weights for each shark 

type-fin position combination:   

mean lot weight = ((base slope + shark effect + fin effect) • mean number of bags)  

+ (base intercept + shark effect + fin effect) + �  (Eq. 2.3) 

 

The normally distributed error term (� ) was added to the predicted mean lot weight to 

account for uncertainty in the regression prediction.  These predicted mean lot weights 

were then multiplied by the observed number of lots of that combination in each auction 

to provide a total auction weight for the combination:   

 

Total lot weight = mean lot weight (estimated) • numbers of lots (observed) (Eq. 2.4) 

 

The base slope, base intercept and effects structure for Model A shown in Equation 2.3 was 

implemented using a hierarchical joint probability model and Monte Carlo Markov Chain 

integration (Gelman et al. 1995).  The model took the following form: 
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where, for each shark type-fin position combination,  

lw
m is the mean lot weight across all auctions and traders,  

lw
s is the standard deviation in the lot weight across all auctions and traders,  

l
jw

m is the vector of mean lot weight for trader j across all auctions,  

l
jw

s  is the standard deviation in mean lot weight for trader j across all auctions (assumed 

to be constant across traders),  

l
ajw

o
×m is the vector of observed mean lot weight for trader j in auction a,  

Ns is the number of sampled traders, and  

Na,j is the number of auctions for trader j where the mean lot weight is available. 

 

The integral of Equation 2.5 which gives the predicted mean lot weight for each shark 

type-fin position combination for trader j in auction a, �

P
w

l
j.a  given �

o
w

l
j.a  is shown below: 
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  (Eq. 2.6) 

 

Since weights cannot take negative values, the data were transformed using the natural 

logarithm, and all predicted mean lot weights were back-transformed before being 

multiplied by the number of lots to produce total lot weight.  A flowchart of the Model A 

algorithm is presented in Figure 2.7, and the distributions and uninformative (diffuse) 

priors assigned to each variable are given in Table 2.3.   
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Figure 2.7  Flowchart showing the derivation and relationships between parameters for Model A.  

Large rectangular boxes represent loops.  Thin arrows indicate that the ‘parent’ node 

determines the ‘child’ node in a stochastic manner.  Bold arrows indicate that the 

‘child’ node is logical and therefore calculated from the ‘parent’ node.  Ovals represent 

stochastic nodes (random variables), whereas small rectangles represent deterministic 

nodes, such as data or priors.  Priors on stochastic precision nodes are given in Table 

2.3 but are not shown here for simplicity of presentation.   

loop over fin types
loop over    shark types

loop over   all observations/predictions

Mean Precision Mean Precision

Mean

Fin effect
for slope

Fin effect
for intercept

Shark effect 
for intercept

Shark effect 
for slope

Precision

Mean

Precision

Intercept Slope

Base intercept Base slope

MeanPrecisionMean Precision

Mean
number
of bags

Mean lot
weight

Total
number
of lots

Total weight

Precision

loop over fin types
loop over    shark types

loop over   all observations/predictions

Mean Precision Mean Precision

Mean

Fin effect
for slope

Fin effect
for intercept

Shark effect 
for intercept

Shark effect 
for slope

Precision

Mean

Precision

Intercept Slope

Base intercept Base slope

MeanPrecisionMean Precision

Mean
number
of bags

Mean lot
weight

Total
number
of lots

Total weight

Precision

 



 59 

Table 2.3  Variables used in Model A and their assigned distributions and priors.  Precision is 

calculated as 1/variance.  ~dgamma (0.001,0.001) represents a gamma-distributed 

random variable with scale of 0.001 and shape of 0.001. 

Variables (total number of 

parameters estimated) 

Distribution Mean Precision 

base slope (1) 

base intercept (1) 

Normal 1 0.001 

shark effects for slope (3) 

shark effect for intercept (4)  

fin effect for slope (3) 

fin effect for intercept (4) 

Normal 0 ~dgamma 

(0.001,0.001) 

Mean lot weight (deterministic) Logical = (slope x 

mean number 

of bags) + 

intercept 

NA 

Mean lot weight (stochastic)  Normal Mean lot 

weight 

~dgamma 

(0.001,0.001) 

Total lot weight Logical  Mean lot 

weight 

(stochastic) x 

number of lots 

NA 

 

2.4.2 Execution of and Results for Model A:  Prediction of Missing Lot Weights  

Model A initially specified an effect term for each of the 12 shark types and each of the 4 

fin positions.  It was desirable, however, to group these effects to improve the 

convergence efficiency of the model and increase the estimation power for those shark 

types or fin positions with limited observations.  To accomplish this, Model A was run 

using only shark type effects, probability intervals for each shark type effect were 

observed, and shark types were grouped based on similarities in the intervals.  Similar 

model runs were undertaken to group fin position effects (Figure 2.8).   
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Figure 2.8  95% probability intervals for each of the shark type and fin position effects (i.e. offsets 

from the base mean represented by zero) for slope and intercept terms in Model A.  For 

each effect, dots represent medians and lines represent the 95% probability interval.  

Numerals above each line represent the final group number for each effect.  The 

abbreviations follow the shark types and fin positions given in Figure 2.6.   

 

All effects were constrained to sum to zero, therefore effects were estimated for all but 

the least data-rich of the groups, and this final group was assigned an effect such that the 

total of all effects would equal zero.   

 

The appropriateness of grouping and reducing the number of effects for shark type and 

fin type was evaluated by using the model to predict values for all observed data points 

(n=1,980).  Posterior predictive p-values (Gelman et al., 1995) were then calculated to 

quantify where in the posterior predictive distribution the observed value lies.  Those 

shark types or fin positions with p-values of less than 0.05, indicating a significant under 

prediction by the model, were re-examined and iteratively re-grouped, if necessary, to 

minimize the number of low p-values across groups and thus assure that all shark type-fin 
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position combinations were accurately predicted.  Only under prediction was examined in 

the posterior predictive p-values since the long tail of the negative binomial distribution 

makes it easy for the model to be fitted to high total weight values. 

 

As shown in Figure 2.8, the original twelve shark effects for slope were combined into three 

groups, and the original twelve shark effects for intercept were combined into four groups.  

Fin position effects for slope were condensed from four original groups into three, but for 

the intercept effect each fin position retained its own group.  Under the final effects 

groupings, only 2.5% of the 1,980 p-values were <0.05 (n=49), but roughly half of these 49 

values were for shark type Wu Gu across a variety of fin positions (Table 2.4).  The Wu Gu 

effects for slope and intercept were variously combined with other slope and intercept 

groups, but model convergence proved difficult to achieve (i.e. the distributions of the 

various effects became less stable).  Wu Gu effects were also estimated separately (i.e. in 

their own group) but the total number of under predicted p-values remained near n=45 in 

each case, thus the addition of an extra parameter resulted in an improvement in the Wu Gu 

estimation but was accompanied by a worsening of predictions for other groups.  For these 

reasons, the groups shown in Figure 2.8 were retained as the final groupings.  The poor 

estimation for Wu Gu may derive from the presence of several species, including at least 

one from another genus, in the Wu Gu trade category (see Table 3.2).   

Table 2.4  Distribution of posterior predictive p-values (Gelman et al. 1995) by shark type and fin 

position.  The abbreviations follow the shark types and fin positions in Figure 2.6.   

Shark: YJ QL WY HH BQ RS CC GP WG SQ LQ OT Total 

Fin: D   1     2 7 1   11 

C 1 5 3  1  1  7  1 1 20 

P        2 10  1 3 17 

O        2     2 

Total 1 5 4 0 1 0 1 6 24 1 2 4 49 
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Diagnostics packaged within CODA (i.e. Geweke, Gelman and Rubin, Raftery and 

Lewis, Heidelberger and Welch convergence tests, and an autocorrelation test (Best et al. 

1996b)) were used to evaluate model results.  Other intuitive output testing including 

monitoring parameters at the beginning and end of potentially converged chains, and 

checking that parameter estimates were identical whether or not model results were 

thinned (e.g. only every 10th result used in the calculation), were also employed.  These 

methods indicated that Model A converged and was free of autocorrelation after 

approximately 50,000 iterations.   

 

Although Model A’s prior probability distributions (priors) are uninformative (diffuse), 

the data consist of 1,980 pairs (mean number of bags, mean lot weight per auction) of 

points and these exert a strong influence on the estimated slope and intercept parameters 

(posterior probability distributions or posteriors).  Using an in-built capacity of the 

WinBUGS software for multiple imputation of missing data, mean lot weights were 

predicted for the 313 missing values, and these were used to calculate total weights.  

Figure 2.9 illustrates the distribution of total weights per auction for each modelled shark 

type that were observed from the auction sheets and input to Model A.  Figure 2.10 shows 

the distribution of Model A predictions by shark type for auctions where the total weights 

were not recorded.   

 

The total weights predicted by Model A were used in two ways in the remainder of the 

imputation algorithm.  Firstly, in each iteration of the larger model (Model A + B) they 

were stochastically summed and combined with the known sum of observed total auction 

weights (n=1,980) to produce a full set of total auction weights (n=2,293) for all 148 

observed auctions.  Secondly, the medians of each of the 313 predicted Model A 

distributions were included alongside the observed 1,980 total auction weight values as 

input for Model B for effects generation only.  This use of point estimates is contrary to 
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Figure 2.9 Histograms showing total weight per auction by shark type in observed data sets.  

Data points for each shark type represent a mixture of all fin types.  The independent 

axis is weight in kilograms; the dependent axis is frequency.  Zero values, i.e. where 

no fins of a given shark type-fin position combination were present in a given 

auction, have been removed from the plots, but the number of zero values is shown 

in each heading. 
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Predictions 

Figure 2.10  Predictions (posterior probability distributions) for 313 missing total lot weights 

produced by Model A.  For each missing data point (arranged along the dependent 

axis), medians are represented by small squares while lines represent the 95% 

probability interval.  Intervals are sorted in ascending order by median in each plot.  
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the stochastic nature of the algorithm but was necessary because of a requirement in 

certain types of Bayesian networks, including WinBUGS, to represent the network as a 

directed acyclic graph and thus avoid cyclic processes in the modelling (Jensen 1996).  In 

practical terms, such models require clear distinctions between deterministic and 

stochastic parameters (Congdon 2001).  This means that parameters such as total weight 

cannot be stochastically simulated in Model A and then used in Model B, as if they were 

data, to generate other unknown parameters.  Such usage would create a loop in the 

Bayesian network and violate the directional flow of the model.  The only option to avoid 

using point estimates from Model A in Model B, was to predict missing auction values in 

Model B from only the completely observed auction data (n=1,980) and use the Model A 

results for stochastic summing only.  This option was rejected because it would result in 

Model B being unable to estimate effects for two traders who never report lot weights and 

who collectively represent 59 of the 513 total auctions (Table 2.2).  Potential 

underestimation of uncertainty in the data input to Model B was addressed by treating 

these data as random variables within the likelihood functions applied in Model B as 

discussed below.   

2.4.3 Structure of Model B 

The purpose of Model B is to predict total auction weights by shark type and fin position 

for all unobserved auctions.  The number of unobserved auctions is known, as is the 

identity of the trader holding each unobserved auction (Table 2.2).  As illustrated in the 

distribution of total auction weights by shark type (Figure 2.9), fin position (Figure 2.11), 

and trader (Figure 2.12), there is a large spike of values at zero, i.e. no fins of a particular 

combination auctioned, and a flattened distribution with a long tail for the non-zero 

values.  When the analysis was begun, a chi squared goodness-of-fit test was used to 

determine whether the non-zero weight data fit the negative binomial distribution (as 

given in Hilborn and Mangel (1997)).  As the null hypothesis that the distribution fits the 
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data was not rejected (p>0.975), it was decided to formulate Model B on the negative 

binomial distribution.  Total auction weights were assumed to vary by shark type and fin 

position, as in Model A, but Model B also allows for trader effects given that all traders’ 

data were now complete.  Model B produces predicted posterior distributions for the 

traded weight per auction for all combinations of shark type (12), fin position (4) and 

trading house (16), i.e. 768 combinations in total.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11  Histograms of total lot weight by fin position with weight in kilograms on the 

independent axis and frequency of observations on the dependent axis.  The 

number of observed total lot weights is given by n with the total sample size for 

all fin types equal to 1,980.  Zero values, i.e. where no fins of a given shark 

type-fin position combination were present in a given auction, have been 

removed from the plots, but the number of zero values is shown in each heading. 
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A number of possible forms of the negative binomial distribution were available to 

simulate the total weights.  One form, which is particularly suitable for implementation in 

WinBUGS, assumes z[i], total auction weight for a given shark type-fin position 

combination in observation i, is Poisson distributed with mean � [i] (Elliot et al. 2000): 

z[i] ~ Po(� [i])       (Eq. 2.7) 

where 

� [i] is a gamma distributed random variable with scale parameter k, and shape parameter 

k/mu[i].  In this study, occurrences of large mean lot weight values for � [i] (i.e. hundreds 

of kilograms) made use of the Poisson distribution computationally intractable.  

Therefore, z[i] was given a normal distribution with mean �  and variance �  as stipulated 

by the Poisson distribution.  With this structure, parameter z[i], representing traded fin 

weight, takes a negative binomial distribution.   

 

This negative binomial portion of Model B predicts the total auction weights when fins 

are present, however, a binomial portion of the model is necessary to account for the large 

number of zero observations when no fins of that shark type – fin position are present.  

The binomial parameter y[i] is based on a probability p that fins of the given type are 

present.  The parameter p is, in turn, based on g, the summation of a normally distributed 

base mean plus additive effects for shark type, fin position and trader type, transformed, 

using the logit transformation, to a random variable between 0 and 1.   

 

Another feature of the binomial portion of the model is an interaction term between shark 

type and fin position.  Based on information gathered while attending auctions, 

interactions between shark type and fin position were expected for some types of fins.  

The reason for this is that according to traders the fins of some shark types are similar in 

value regardless of fin position.  For shark types such as Chun Chi and Sha Qing, this 

results in a large number of ‘other’ fin position lots since traders do not need to label 
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these fins by fin position to inform potential buyers of their value.  In contrast, fins from 

shark types such as Qing Lian and Liu Qiu appear to vary substantially in value based on 

fin position and thus are always labelled by fin position (i.e. almost never labelled as 

‘other’).  For these reasons an interaction term for shark type – fin position for g, which 

determines the probability that fins were present, was included in Model B.  

 

Model B is thus a mixed model in which the product of the binomial parameter, either 0 

or 1, and the negative binomial parameter, a positive integer representing traded weight 

per auction, produces a probability distribution for total auction weight for each of the 

768 shark type – fin position combinations.  A flowchart showing the structure of Model 

B is shown in Figure 2.13 and the Model B parameter inputs are detailed in Table 2.5.  
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Figure 2.13  Flowchart showing the derivation and relationships between parameters for Model B.  

Large rectangular boxes represent loops.  Thin arrows indicate that the ‘parent’ node 

determines the ‘child’ node in a stochastic manner.  Bold arrows indicate that the 

‘child’ node is logical and therefore calculated from the ‘parent’ node.  Ovals 

represent stochastic nodes (random variables), whereas small rectangles represent 

deterministic nodes, such as data or priors.  Priors on stochastic precision nodes are 

included in the model but not shown on this figure for simplicity of presentation.   
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Table 2.5  Variables used in Model B and their assigned distributions and priors.  Precision is 

calculated as 1/variance.  ~dgamma (0.001,0.001) represents a gamma-distributed 

random variable with scale of 0.001 and shape of 0.001.   

 

The final step in Model B involves sampling from the distributions of the 768 

combinations to fill in an array representing the auction calendar for the period October 

1999 to March 2001.  The array consists of the 48 shark type - fin position combinations 

as columns and a vector of the sequence in which trading houses held auctions in the 

Variables (total number of 

parameters estimated) 

Distribution Mean Precision 

Base parameters: 

Base mu, k and g (3) 

Normal 1 0.001 

Effects parameters: 

trader _mu (4) 

trader_k (3) 

trader_g, (3) 

fin_mu (2) 

fin_k (4) 

fin_g (2) 

shark_mu (3) 

shark_k (2) 

shark_g (3) 

fin-shark interaction parameters (8) 

Normal 0 ~dgamma 

(0.001,0.001) 

Negative binomial parameters: 

mu and k 

Binomial parameter: 

g  

Logical = base + trader effect + 

fin effect + shark effect 

NA 

Poisson parameter: 

lambda  

Gamma k k/mu 

Transformed binomial parameter: 

p  

Logical = 1 – inverse logit(g) NA 

z (represents weight of fins) Normal lambda 1/lambda 

y (represents whether fins were 

present) 

Bernoulli p NA 

x (model result) Logical = y * z  
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other dimension (513 rows).  Each cell in the array is either filled by an observed traded 

weight or mapped to one of the 768 distributions and iteratively sampled.  Column totals 

produced through iteration provide total traded weights by shark type and fin position 

over the 18 month period of interest.   

2.4.4 Results for Model B:  Prediction of Auction Weights for Unobserved Auctions 

Preliminary versions of Model B estimated an effect for each individual trader, shark type 

and fin position for mu, k and g.  The 95% probability intervals for these separate effects 

were compared and grouped where similar, then subjected to posterior p-value testing 

(see Section 2.4.2) to determine the appropriateness of the groups in terms of their 

predictive value in reproducing existing data (n=1,980).  Probability intervals for each 

effect and their final groupings are shown for trader, shark and fin effects in Figure 2.14.  

In some cases, for example the fin effect for k, the probability intervals appear to overlap 

between groups but model convergence diagnostics or examination of p-values for the 

various groups indicated that separate groups produced better results.  In other cases, for 

example the shark effect for g, effects were grouped into four groups, rather than three as 

suggested by Figure 2.14, in order to aggregate those shark types with high occurrence of 

‘other’ fin positions, and those shark types with low occurrence of ‘other’ fin positions 

and thus improve estimation of the interaction term.   

 

Interaction effects for the four shark type groups and two fin position groups were 

estimated as shown in Table 2.6.  Since the interaction term is added to the base g, along 

with the trader, shark type and fin position effects, and since in the model the value of the 

g parameter has an inverse effect on p the probability of observing fins of a particular 

combination (i.e. g = logit(p) or g = ln((1-p)/p) ), a low interaction term indicates a high 

probability of observing fins.  As expected, the g interaction term for Chun Chi and Sha  
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Figure 2.14  Probability intervals for the effects (i.e. offsets from the base mean represented by 

zero) based on trader, shark type and fin position for the parameters mu, k and g.  The 

intervals are represented by the line, with the median shown as a point.  The numeral 

over each line indicates the assignment of each individual effect to a group based on 

similarities in the intervals. The abbreviations follow the shark types and fin 

positions given in Figure 2.6 and the traders in Table 2.2.   
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Table 2.6.  Median and 95% probability interval for shark type – fin position interaction effects 

for g, the variable reflecting the probability that fins of a given combination are present 

at auction.  See Table 2.7 for data (observed number of lots) on which shark types had 

high or low numbers of ‘other’ fin positions.   

 

Fin Position  

 Dorsal, Pectoral, Caudal 

(Group 1) 

 

Other  

(Group 2) 

Shark Type   

Ya Jian, Qing Lian, Wu Yang, 

Hai Hu, Wu Gu, Liu Qiu  

(Group 1)  

-1.32 (-1.65 to –0.98) 1.32 (0.98 to 1.65) 

Ruan Sha  

(Group 2) 

-0.41 (-1.24 to 0.09) 0.41 (1.24 to -0.09) 

Bai Qing, Chun Chi, Gu Pian, 

Sha Qing  

(Group 3) 

1.05 (0.82 to 1.35) -1.05 (-1.35 to –0.82) 

Other  

(Group 4) 

0.70 (0.43 to 1.05) -0.70 (-1.05 to -0.43) 

 

Qing ‘other’ fin positions, as well as the ‘other’ shark types’ ‘other’ fin position was low, 

meaning that these fins are frequently observed.  In contrast, the g interaction term for 

shark types such as Qing Lian and Liu Qiu ‘other’ fin positions was high indicating a low 

frequency of occurrence.  The interaction effect for Ruan Sha is intermediate to these 

groups, and its 95% probability interval straddles zero, thus the term is not particularly 

important in influencing the estimate of total auction weight for Ruan Sha fins.   

 

The posterior p-value testing revealed that of the 7,104 observed data points, only 305 

(4.5%) were found to be significantly (p<0.05) under predicted by the model.  The under 

predicted total auction weights were generally distributed in proportion to the frequency 
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of each fin position, shark type or trader in the dataset (Figure 2.15).  One exception to 

this was the shark type Ruan Sha (RS) which occurred in very low frequency in the data 

set (n=39) and had a large number of under predicted data points (n=25).  This was due to 

a very low p value for Ruan Sha in the binomial portion of the model (p ranged from 

0.00458 to 0.115 depending on trader and fin position) which acted to produce a large 

number of zero weights, thus depressing the stochastic estimate of total auction weight 

when summed over numerous iterations.   

 

 

 

 

 

 

Figure 2.15  Results of posterior p-value assessment by fin position, shark type and trader for 

Model B.  Frequency is shown on the dependent axis.  Gray bars indicate the number 

of data points simulated (n=1,980 for each set by fin position, shark type and trader); 

black bars indicate the number of significantly under predicted total auction weight 

values (n=304 for each set).   
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the posterior p-value analysis was used to derive an estimate of the degree of under 

prediction in Model B as a whole.  This was accomplished by summing the observed total 

auction weights for all 1,980 data points and comparing this total with the sum of the 

predicted total auction weights.  The sum of 1,980 observed total auction weights was 

517,288 kg as compared to the sum of predicted total auction weights of 472,482 kg.  

This suggested a correction factor of 1.095 should be applied to the predicted auction 
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weights generated by Model B to upwardly adjust the predicted totals and provide a more 

accurate sum of total weights.   

 

The results of Model B consist of probability distributions for weights of fins auctioned in 

each of 48 categories, representing 12 shark types and 4 fin positions.  Each of these 

probability distributions represent the sum of three components:   

i) the deterministic sum of fully observed total auction weights (n=1,980);   

ii)  the stochastic sum of the total auction weights for those auctions where 

weight data were missing but predicted by Model A; and  

iii)  samples from the 768 predicted distributions (12 shark types x 4 fin positions 

x 12 traders), upwardly adjusted by the correction factor of 1.095 to fill-in 

weights for each known, but unobserved auction during the 18 month period 

(n=365).   

For presentation purposes the results were converted from catties to kilograms (1 catty = 

0.60479 kg), and scaled to represent an annual period.  Tables 2.7 and 2.8 present the 

results in the form of probability intervals for each of the 48 combinations modelled, the 

overall auctioned fin weight for each type of shark, and the proportion of each shark’s 

fins in the auctions.   

 

Model convergence was evaluated using the same diagnostics described above for Model 

A.  All parameters were found to have converged after 140,000 iterations.  Although 

autocorrelation was not detected in CODA analysis, subsequent iterations undertaken to 

produce results were thinned by 10 to prevent any remaining bias due to autocorrelation 

in the chains.   
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Table 2.7  Posterior predictive means, 95% probability intervals (in parentheses), and observed 

sample size (in brackets) for total auctioned shark fin weight (kg) by shark type and fin 

position.  Means are presented because the distributions are nearly symmetrical.  Model 

output has been divided by 1.5 to express figures on an annual basis.   

Trader’s 

Market 

Category 

Dorsal Fins 

 

Caudal Fins Pectoral Fins Other Fins 

Ya Jian 40,682 [n=63] 

(33,820 to 48,383) 

34,126 [n=58] 

(27,191 to 42,053)  

137,045 [n=79] 

(118,337 to 158,334) 

2,203 [n=3] 

(72 to 6,689) 

Qing Lian 7,645 [n=41] 

(6,254 to 9,140)  

8,282 [n=49] 

(6,975 to 9,745)  

21,462 [n=34] 

(17,789 to 25,587) 

465 [n=0] 

(0 to 1,399) 

Wu Yang 9,834 [n=61] 

(8,471 to 11,378)  

9,685 [n=58] 

(8,306 to 11,241) 

32,050 [n=78] 

(28,409 to 36,122) 

558 [n=1] 

(100 to 1,465) 

Hai Hu 4,018 [n=34] 

(3,273 to 4,895) 

3,811 [n=19] 

(3,035 to 4,713) 

11,846 [n=56] 

(9,915 to 14,035) 

346 [n=3] 

(104 to 825) 

Bai Qing 5,750 [n=44] 

(4,657 to 6,995) 

4,431 [n=29] 

(3,324 to 5,685) 

11,600 [n=18] 

(8,681 to 14,946) 

16,9781 [n=41] 

(13,184 to 21,293) 

Ruan Sha 376 [n=14] 

(225 to 587) 

313 [n=7] 

(165 to 527) 

1,036 [n=17] 

(634 to 1,599) 

112 [n=1] 

(13 to 385) 

Chun Chi 6,657 [n=50] 

(5,552 to 7,943) 

6,475 [n=58] 

(5,403 to 7,774) 

15,640 [n=49] 

(12,676 to 19,111) 

25,986 [n=59] 

(22,260 to 30,131) 

Gu Pian 2,245 [n=15] 

(1,685 to 2,907) 

2,134 [n=15] 

(1,539 to 2,778) 

6,084 [n=21] 

(4,528 to 7,919) 

10,334 [n=52] 

(8,298 to 12,749) 

Wu Gu 7,927 [n=49] 

(6,576 to 9,402) 

7,697 [n=43] 

(6,326 to 9,249) 

20,656 [n=39] 

(17,003 to 24,885) 

916 [n=1] 

(466 to 1,825) 

Sha Qing 5,052 [n=33] 

(3,976 to 6,245) 

4,012 [n=16] 

(2,913 to 5,233) 

11,910 [n=30] 

(8,923 to 15,277) 

19,938 [n=60] 

(16,023 to 24,280) 

Liu Qiu 4,766 [n=46] 

(4,017 to 5,625) 

4,181 [n=44] 

(3,417 to 5,048) 

12,676 [n=55] 

(10,580 to 14,946) 

244 [n=0] 

(0 to 735) 

Other 101,645 [n=122] 

(92,130 to 112,330) 

95,275 [n=118] 

(85,840 to 105,717) 

211,717 [n=84] 

(184,300 to 242,198) 

226,837 [n=113] 

(198,008 to 258,850) 
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Table 2.8  Estimates of total traded shark fin weight (kg) by shark type with all fin positions 

combined.  Means are presented because the distributions are nearly symmetrical.  

Model output has been divided by 1.5 to express figures on an annual basis.  All 

quantities have been stochastically simulated and thus individual categories may not 

sum to the total given in the last row.   

 Total Traded Weight (kg) Percentage of Overall Proportion of 

Trade by Category 

Trader’s 

Market 

Category 

Posterior 

Mean  

95% Probability 

Interval  

Posterior Mean  95% Probability 

Interval  

Ya Jian 214,096 190,791 to 240,021 18.21 16.58 to 19.95 

Qing Lian 37,852 33,465 to 42,900 3.22 2.84 to 3.65 

Wu Yang 52,133 47,738 to 57,092 4.44 4.02 to 4.89 

Hai Hu 20,023 17,422 to 23,018 1.70 1.47 to 1.96 

Bai Qing 38,763 33,304 to 44,634 3.30 2.84 to 3.81 

Ruan Sha 1,837 1,221 to 2,672 0.16 0.10 to 0.23 

Chun Chi 54,754 49,149 to 61,043 4.66 4.17 to 5.21 

Gu Pian 20,797 17,640 to 24,329 1.77 1.50 to 2.07 

Wu Gu 37,191 32,655 to 42,335 3.16 2.76 to 3.60 

Sha Qing 40,924 35,433 to 47,012 3.48 3.02 to 3.99 

Liu Qiu 21,865 19,220 to 24,905 1.86 1.63 to 2.12 

Other 635,836 584,630 to 690,670 54.06 51.77 to 56.26 

All Categories 1,175,712 1,107,975 to 1,247,480 NA NA 

 

 

These probabilistic Model B results were compared to a deterministic estimate of the 

same auctioned fin weight quantities in order to explore differences between the two 

methods.  To construct the deterministic estimate, an mean auction weight for each of the 

48 fin combinations was calculated for each trader.  For every missing auction of a given 

trader, the 48 mean auction weights for trader were filled-in, then the sum of the missing 

auctions’ traded weights and the observed auctions’ traded weights were tallied.  A 

comparison between the methods is illustrated in Figure 2.16.  
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Although the deterministic and Bayesian figures match closely, the deterministic means 

fell within the relatively narrow 95% Bayesian probability intervals for only 15 of the 48 

combinations.  Combinations with particularly poor matches between the two methods 

include Ya Jian Caudal and Pectoral, Qing Lian Pectoral, Wu Yang Pectoral, Bai Qing 

and Sha Qing Pectoral, Bai Qing and Chun Chi Other, and most of the Other (unidentified 

shark type) fins.  There is no particular pattern apparent in these combinations, however 

the Bayesian probability intervals are generally wider for the combinations with high 

divergence between the best estimates of the two methods indicating there is greater 

uncertainty in the data for these combinations.   

 

Despite the lack of correspondence in the two methods for some combinations shown in 

Figure 2.16, the overall summation of all combinations is strikingly similar.  The 

Bayesian posterior mean for total auctioned weight of 1,175 mt year-1 (probability 

interval of 1,108 to 1,247 mt year-1) represents 99.68% of the deterministic estimate of 

1,179 mt per year.   

 

2.5 Conversion of Auctioned Fin Weights to Numbers and 

Biomass of Sharks (Model C) 

 

The next step in the analysis (Model C) was to apply Bayesian modelling methods to 

convert the total auctioned fin weight estimates provided by Model B into equivalent 

numbers and biomass of sharks.  The use of Bayesian methods in Model C was 

particularly apposite since the algorithms for these conversions proved to be highly 

constrained by the availability of suitable data.  This section describes the two 

complementary components of Model C:  the conversion of total auctioned fin weights to 
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number of dorsal, pectoral or caudal fins for each shark type which represent the number 

of sharks (Part 1); and converting fin length to whole length, and then to biomass of a 

single shark, and finally multiplying this biomass by number of sharks to calculate total 

biomass (Part 2).   

 

2.5.1 Algorithm and Results for Estimating Number of Sharks (Model C, Part 1) 

The theory underlying this first component of Model C is that each shark utilized in the 

shark fin trade will contribute one dorsal fin, two pectoral fins and one caudal fin.  

Therefore, if the number of dorsal, pectoral and caudal fins represented in the auctioned 

fin weights can be estimated, this number should be equivalent to the number of sharks 

represented for dorsal and caudal fins, and equal to half the number of sharks represented 

for pectoral fins.   

 

As the accuracy of this algorithm is highly dependent on beginning with the correct 

auctioned weights for each fin position, several nomenclatural issues were carefully 

considered prior to applying any conversion factors to the weights generated by Model B.  

The first issue concerned the labelling of dorsal fins.  It was recognized that some sharks 

possess two dorsal fins, but in interviews traders stated that only first dorsal fins would be 

labelled as �  – ‘zhi’ (i.e. the ‘dorsal’ category) due to lower quality ceratotrichia (fin 

rays) in second dorsals.  Given the concerns regarding mixing of product types (see 

Section 2.2.1), it appeared safe to assume that smaller, and lower value, second dorsals 

would not be mixed with first dorsals.   

 

Another issue involved the allocation of ‘other’ fins, representing both shark types and fin 

positions.  Fins labelled as ‘other’ for shark type in the database were excluded from the 

Model C analysis.  This decision was taken based on the difficulties associated with 
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applying appropriate conversion factors to a broad range of fin sizes and shapes about 

which little was known.  Instead, this analysis estimates numbers and biomass for the 

eleven shark types included in the genetics study only (Chapter 3).  Extrapolation of these 

numbers, in proportion to weight, to all unstudied shark types in Hong Kong and 

worldwide is undertaken in Chapter 4.   

 

The disposition of fins labelled as ‘other’ fin position within the selected eleven shark 

type categories was less easily decided.  As demonstrated by the discussion of the 

interaction term in Model B (Section 2.4.4), for some shark types the ‘other’ fin position 

category was likely to contain dorsal, pectoral and caudal fins that were left unspecified 

because their value could be clearly conveyed to traders by a description of shark type 

only.  These ‘other’ fins should thus be redistributed to the dorsal, pectoral and caudal 

categories.  However, in some cases, the ‘other’ fin position category may contain second 

dorsal, upper caudal, pelvic or anal fins, which would not be desirable to include in the 

analysis because they would improperly inflate the estimates if counted as first dorsal, 

pectoral or caudal fins.  Based on experience at auctions and discussions with traders, it 

was understood that all lower value fins such as second dorsal, upper caudal, pelvic or 

anal fins were unlikely to be sorted by shark type as it was not worth traders’ effort to do 

so.  Therefore in the auction database they would be labelled as ‘other’ shark type and 

these fins have already been excluded from Model C.  On this basis, it was assumed that 

any fins labelled as one of the eleven shark type categories but given a fin position of 

‘other’ were unspecified dorsal, pectoral or caudal fins.   

 

The first step in Model C was to redistribute all ‘other’ fin position weights from the 

eleven identified shark type categories to the dorsal, pectoral or caudal categories for that 

shark type.  This redistribution was accomplished by assigning one quarter of the ‘other’ 

fin position fins to dorsal and caudal fin position categories, and half of the ‘other’ fin 
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position fins to the pectoral fin position category.  This logical distribution of fins 

between the dorsal, pectoral and caudal fin positions is generally supported by the 

distribution of fin weights between dorsal, pectoral and caudal fin weights in Table 2.7.  

However, since Model C does not explicitly account for potential, and unknown, 

variability in these ratios, in this sense it underestimates uncertainty.   

 

Model C, Part 1 was founded on a supposed power relationship (i.e. linear in log form) 

between shark fin length, which was available from the auction sheets in qualitative 

categories (Section 2.2.1), and shark fin weight.  The slope and intercept of this 

relationship is expected to vary by shark type and fin position.  If the weight of a single 

fin in a given shark type – fin position combination can be determined from available 

information on fin lengths, it is possible to estimate the number of fins present in a given 

mass of a particular shark type – fin position combination.   

 

Data on fin sizes were available from the auction sheets in qualitative categories which 

were translated into numerical classes of 1 to 6, in ascending order of size, when the data 

were entered (see Section 2.2.1).  Auction data were sorted by shark type – fin position 

combination and the proportion of fins in each of the 6 categories was obtained (Figure 

2.17).  In order to fairly represent traders who do not report lot weights, proportions of 

each fin size were based on the number of bags of each size class of fins.   

 

Each qualitative fin size class (1-6) was assigned a midpoint length based on a small set 

of observations (n=179) at auctions covering a range of shark types, fin positions and 

sizes (Table 2.9).  These data were obtained by observing lengths measured by auction 

personnel using a measuring tape during auctions (one trader only) or by my visual 

approximation of lengths based on finger-span measurements or measuring fins against 

floor tiles with known lengths.  Traders were highly sensitive at auctions in general and  
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Figure 2.17  Proportion of fins by shark type - fin position, in each of 6 size categories from the 

Hong Kong auction dataset.  Values in the six size classes sum to 1 in each plot.   
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Figure 2.17.  (cont.) Proportion of fins by shark type - fin position, in each of 6 size categories 

from the Hong Kong auction dataset.  Values in the six size classes sum to 1 in each plot.   
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Table 2.9  Assignment of length midpoints (cm) in each size class by shark type and fin position.   

  Size Class 

 Group 1 2 3 4 5 6 

Dorsal        

Ya Jian  A 11 15 19 23 27 30 

Gu Pian B 16 22 29 35 41 48 

All others C 13 18 23 28 33 38 

Caudal        

Ya Jian A 8 12 16 22 30 34 

Qing Lian B 18 22 26 30 34 38 

Wu Gu C 5 7 9 11 15 17 

All others D 7 10 13 16 21 24 

Pectoral        

Ya Jian and 

Wu Gu 

A 28 33 39 44 50 61 

Chun Chi 

and Gu 

Pian 

B 13 18 23 28 33 38 

All others C 18 23 28 33 38 45 

 

 

even more so when they believed any data were being recorded, therefore the 

opportunities for data collection to support this component of the algorithm were 

extremely limited.  Informal interview information from co-operative traders was also 

used to assign the length midpoints, and the relative lengths of dorsal, pectoral and caudal 

midpoints were cross-checked using ratios (each fin’s length as a proportion of pre-caudal 

length) from taxonomically accurate drawings (Compagno (1984), Figure 2.18).   
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For dorsal fins, most of the eleven shark types were assigned to a default vector of 

midpoints (Table 2.9).  Exceptions included Ya Jian (believed to be blue shark, Prionace 

glauca) which has a somewhat smaller first dorsal fin and Gu Pian (believed to be the 

great hammerhead, Sphyrna mokarran) which has an unusually large first dorsal fin.  

Lower caudal fin midpoint lengths had a larger number of exceptions.  Ya Jian was 

assigned a larger size for lower caudal fins, as was Qing Lian (believed to be shortfin 

mako, Isurus oxyrinchus) which have considerably larger lower caudal fins due to their 

lunate morphology.  Wu Gu (believed to be threshers, Alopias spp.) have smaller lower 

caudal fins and were sized accordingly.  Pectoral fin groups were easily defined based on 

larger and smaller than average fin lengths.  Both Ya Jian and Wu Gu have very long 

pectoral fins and were thus assigned their own larger midpoints, whereas Chun Chi 

(believed to contain Sphyrna spp.) and Gu Pian have smaller pectorals and were assigned 

smaller midpoints.   

 

The relationship between fin length and fin weight was supported by data collected from 

the Hong Kong shark fin market (Table 2.10).  Between October 2001 and March 2002, 

fins (n �  10) from all eleven shark types and each of the three fin positions (397 fins in 

total) were borrowed from a co-operative trader and taken to a laboratory for measuring 

and weighing on an electronic balance.  Fins were measured along the anterior edge (as is 

the custom in the Hong Kong shark fin trade) to the nearest 0.5 cm and weighed to the 

nearest hundredth of a gram.   

 

The weight of individual fins may vary substantially based on the amount of muscle 

tissue remaining attached to the fin and also based on moisture content.  Both factors 

increase the variance in the length-weight relationship but should be accounted for when 

estimating fin weights across the range of fins auctioned in Hong Kong.   
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Table 2.10  Empirical length – weight relationships for dried shark fins.  The sample size is given 

by n.  Slopes (m) and intercepts (b) given here are based on data transformed by 

natural logarithm and modelled using least squares regressions of the form, y= mx+b.  

Model C generates slopes and intercepts from the data using Bayesian methods 

therefore its parameters may differ.  Instances where the correlation coefficient (R2) 

is reported as being equal to 1 reflect the statistical results obtained but do not 

necessarily imply that the relationship is known with perfect certainty.   

 Dorsal Caudal Pectoral 

 n m b R2 n m b R2 n m b R2 

YJ 12 2.12 -2.73 0.83 10 1.70 -1.52 0.87 13 3.06 -7.01 0.94 

QL 10 2.11 -1.90 0.83 9 2.51 -3.28 0.97 10 3.14 -5.88 1.00 

WY 13 3.04 -4.94 0.91 20 2.55 -3.35 0.93 11 2.40 -3.68 0.84 

HH 7 2.81 -4.44 0.74 10 2.10 -1.95 0.81 10 2.68 -4.64 0.95 

BQ 11 2.40 -3.01 0.76 10 2.66 -3.95 0.76 10 3.28 -6.72 0.70 

RS 10 3.04 -5.37 0.96 20 2.92 -5.02 0.92 10 2.84 -5.22 1.00 

CC 20 2.98 -5.33 0.98 31 2.90 -4.68 0.96 21 2.81 -4.38 0.91 

GP 10 2.39 -3.66 0.96 10 2.74 -4.18 0.90 10 2.84 -4.92 0.94 

WG 10 3.09 -5.31 0.67 9 3.13 -4.86 0.92 10 1.74 -1.36 0.69 

SQ 10 3.58 -6.97 0.87 10 2.71 -4.13 0.92 10 2.52 -3.95 0.66 

LQ 11 2.78 -4.52 0.96 8 2.33 -2.96 0.94 11 3.16 -6.64 0.99 

 

 

Like Model A, Model C Part 1 employs a power relationship transformed using the 

natural logarithm to the form bmxy += , but in this case, x is the length of a single fin 

and y is the weight of that fin.  Lengths and weights used in the model were transformed 

by natural logarithm.  The algorithm and parameters for Model C, Part 1 are shown in 

Figure 2.19 and Table 2.11.  
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Figure 2.19  Flowchart showing the derivation and relationship between parameters for Model C, 

Part 1.  Thin arrows indicate that the ‘parent’ node determines the ‘child’ node in a 

stochastic manner.  Bold arrows indicate that the ‘child’ node is logical and therefore 

calculated from the ‘parent’ node.  Ovals represent stochastic nodes (random 

variables), whereas small rectangles represent deterministic nodes, such as data or 

priors.  Priors on stochastic precision nodes were included in the model but are not 

shown here for simplicity of presentation.   
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Table 2.11  Variables used in Model C Part 1 (estimation of number of sharks ) and their assigned 

distributions and priors.  ~dgamma(0.001,0.001) is a gamma-distributed random 

variable with scale 0.001 and shape 0.001.   

Variable 

(number of 

parameters 

estimated) 

Distribution Mean Precision (1/variance) 

base slope (1) 

base intercept (1) 

Normal 1 0.01 

fin effect for slope 

(2 for dorsal, 2 for 

caudal, 4 for 

pectoral) 

fin effect for 

intercept 

(3 for each fin 

position) 

Normal 0 ~dgamma(0.001,0.001) 

Slope (2 to 4) Logical = base slope + fin effect for 

slope 

NA 

Intercept (3) Logical = base intercept + fin effect for 

intercept 

NA 

fin size class Categorical 

(probabilities in 

six categories 

must sum to 1) 

NA NA 

Length of a single 

fin 

Normal fin size class 100 

average length Logical = mean of length for each fin 

position 

NA 

Weight of a single 

fin 

Logical = (length-average 

length)*slope 

NA 

total weight of fins (see Model B) NA NA 

number of fins 

(sharks) 

Logical = total weight of fins/weight NA 

 

As in Model A, the slope and intercept for this equation are constructed from random 

variables representing a base slope or intercept, and an additive effect for shark type.  The 
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fin effect for Model C Part 1 was handled differently, however, because fin position has a 

critical role in determining the fin’s length-weight relationship.  Therefore, each fin 

position (i.e. dorsal, pectoral and caudal) was given its own base slope and intercept, and 

its own set of shark type effects.  This in effect elevated the importance of the fin effect 

over the shark effect.  This approach is grounded in shark morphology since the 

difference in size or weight of fins between fin positions on the same shark is greater than 

the differences between, for example, dorsal fins from a variety of shark species (see 

Figure 2.18).   

 

Empirical data on fin lengths and weights were used by the model to generate the base 

slope and base intercept for each fin position as well as the shark type effects on slope 

and intercept.  As in Models A and B, initial versions of Model C Part 1 estimated an 

effect for each shark type – fin position combination separately but subsequently grouped 

effects to reduce the number of parameters being estimated.  Figure 2.20 shows the final 

groupings and indicates wider probability intervals for dorsal and caudal fins than for 

pectoral fins.   

 

The posterior p-value evaluation revealed high predictive power for dorsal and pectoral 

fins, and a slightly lower but still acceptable predictive power for caudal fins (Table 

2.12).  Less reliable estimators for caudal fins were expected due to the highly variable 

methods of removing caudal fins from the carcass which result in a number of different 

shapes and weights among caudal fins from the same shark type.  Despite the 

demonstrated predictive power of the model with the groups as assigned in Figure 2.20, 

in some cases, for example Ya Jian dorsal fins, the effect group assignment does not 

appear appropriate based on the probability intervals when estimated separately.  Such 

cases were carefully examined and various group assignments were attempted for these 

fins, but the estimators had the greatest predictive power and converged most efficiently 
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Figure 2.20  Probability intervals for the shark type effects for dorsal, caudal and pectoral fins 

when estimating fin weight from fin length.  The numerals above each interval 

indicate the final grouping for effects.  Effects were estimated for 1 to (n-1) groups 

but the nth group’s effect was assigned such that the sum of all effects would equal 1.   
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Table 2.12  Results of posterior p-value analysis (Gelman et al. 1995) for predictions of fin weight 

using model estimators and existing data on fin length.  P-values below 0.05 indicate 

a significantly under predicted fin weight.   

 Dorsal (n=124) Pectoral (n=127) Caudal (n=147) 

Number of under 

predicted data points 

5 4 10 

Percentage of total 4.03% 3.17% 6.80% 

Shark types which 

were under predicted 

(number of data points 

of that shark type 

simulated) 

Hai Hu = 1 (n = 7) 

Wu Gu = 3 (n = 10) 

Sha Qing = 1 (n = 10) 

Chun Chi = 1 (n = 21) 

Gu Pian = 2 (n = 10) 

Liu Qiu = 1 (n = 11) 

Ruan Sha = 2 (n = 20) 

Chun Chi = 3 (n = 31) 

Gu Pian = 1 (n = 10) 

Wu Gu = 4 (n = 10) 

 

 

when the groups were specified as shown in the figure.  Odd groupings of slope and 

intercept effect terms such as these may be explained by an interaction between slope and 

intercept manifested when the effects terms are grouped.   

 

For each of the 33 shark type – fin position combinations, each iteration of Model C Part 

1 draws a fin size (a random variable between 1 and 6 proportional to the observed 

frequency of that fin size within each shark type – fin position combination) and maps it 

to the appropriate midpoint length.  The midpoint is then used as the mean for a normally 

distributed random variable which gives the fin length.  The precision (1/variance) 

assigned to this distribution was such that the range of lengths generated would fall 

between the next lowest and next highest fin sizes.  For example, the fin lengths 

generated for Ya Jian dorsal fins in size class 2 would range from 11 to 19 cm.  Fin length 

is converted to a fin weight using the slope and intercept terms generated by the model 

from the empirical data.  This fin weight, representing the weight of a single fin for that 

shark type – fin position combination, is used as the divisor with the total auctioned 
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weight per year for that combination as the dividend.  When this process is repeated 

under Monte Carlo iteration, the quotient, which represents the number of fins present, 

will converge to a stable distribution of values.   

 

The results for mean weight of a single fin are presented in Table 2.13.  Deterministic 

calculations were conducted for comparison using the midpoints in Table 2.9, the slopes 

and intercepts in Table 2.10, and a deterministic sum of observed weights traded in each 

fin size category.  As these fin weight estimates are fundamental to the estimate of shark 

numbers, a close examination of the results is warranted.   

 

Table 2.13  Posterior median and 95% probability intervals for weight of single fin (in grams) for 

each shark type – fin position combination in Model C Part 1.  Deterministic weights, 

calculated using the midpoints (Table 2.9) and the slopes and intercepts shown in Table 

2.10, are shown in columns marked � .   

Shark Type Dorsal �  Pectoral �  Caudal �  

Ya Jian 43 (5 to 137) 47 138 (41 to 311) 129 21 (2 to 147) 42 

Qing Lian 193 (17 to 582) 169 128 (32 to 371) 172 166 (42 to 492) 45 

Wu Yang 214 (18 to 614) 262 149 (32 to 337) 151 68 (4 to 166) 63 

Hai Hu 223 (57 to 500) 246 191 (42 to 365) 188 78 (34 to 145) 99 

Bai Qing 223 (54 to 474) 225 140 (39 to 356) 173 59 (14 to 132) 60 

Ruan Sha 271 (31 to 530) 247 104 (41 to 316) 142 63 (6 to 114) 62 

Chun Chi 76 (7 to 312) 111 85 (14 to 286) 304 74 (5 to 147) 73 

Gu Pian 218 (41 to 549) 89 163 (39 to 303) 174 86 (14 to 153) 81 

Wu Gu 124 (16 to 342) 84 199 (74 to 428) 193 26 (4 to 62) 217 

Sha Qing 282 (73 to 517) 379 229 (85 to 457) 207 86 (48 to 156) 84 

Liu Qiu 208 (35 to 465) 186 88 (27 to 172) 131 61 (5 to 137) 58 

Range of 

Weights 

observed in 

Hong Kong 

empirical data 

(n=397) 

22 to 285  22 to 643  16 to 354  
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For dorsal fins, the posterior medians for weight of a single fin lie near, but under, the 

upper end of the range of values observed in the empirical dataset, i.e. 285 g.  The dorsal 

fin 97.5% percentile for most shark types is considerably higher than this value, except in 

the case of Ya Jian fins which are estimated with a substantially lower weight.  This result 

may derive from the relatively larger proportion of small size class fins in the Ya Jian 

dorsal records (see Figure 2.17).  Posterior median fin weights for dorsal fins are 

generally similar to their deterministic analogs, except for Gu Pian, whose especially 

large dorsal fin may be reflected in the higher Bayesian estimate.  Pectoral fins’ posterior 

medians and probability intervals all fall within the empirically observed range.  The 

largest discrepancy between the Bayesian and deterministic estimates in pectoral fins 

occurs for Chun Chi, which has comparatively short pectoral fins.  Caudal fin estimates 

all lie within the empirically observed range except for the upper percentiles of Qing Lian 

caudals.  These fins are known to be particularly valuable because of their thickness, 

possibly due to the structure necessary to propel one of the fastest swimming of all sharks 

(Last and Stevens 1994), and thus higher fin weights might be expected.  Wu Gu caudal 

fins show the largest divergence from deterministic estimates with the Bayesian estimate 

predicting a lower fin weight as might be expected from thresher morphology (Figure 

2.18).   

 

The results for number of fins per year for each of the 33 combinations are presented in 

Table 2.14 with the estimate for pectoral fins halved in order that all estimates correspond 

to the number of sharks.  These results are contrasted with an estimate (Figure 2.21) 

based on deterministic single fin weights and the deterministic estimate of total auctioned 

weight (Figure 2.16) which is proportioned into the various fin size classes based on fully 

observed data (Figure 2.17).  The Bayesian estimates explicitly account for uncertainty 

and provide probability intervals for the number of sharks represented, thereby conveying 

two key advantages over deterministic estimates based on a pure scaling approach.  
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Table 2.14  Medians and 95% probability interval of the number of sharks (in thousands) 

represented per year in the Hong Kong auction data by shark type and fin position.  

Estimates based on dorsal and caudal fins assume one fin per shark whereas 

estimates based on pectoral fins have been halved in this table, ie 2 pectoral fins = 1 

shark.   

Trader’s Market 

Category 

Dorsal Fins 

 

Pectoral Fins Caudal Fins 

Ya Jian 980  

(302 to 8,560) 

503  

(223 to 1,705) 

1,638  

(231 to 17,053) 

Qing Lian 40 

(13 to 443) 

86 

(29 to 339) 

51 

(17 to 195) 

Wu Yang 47 

(16 to 532) 

111  

(48 to 503) 

147 

(60 to 2,387) 

Hai Hu 18 

(8 to 72) 

32 

(15 to 136) 

50 

(26 to 117) 

Bai Qing 45 

(20 to 185) 

72  

(27 to 262) 

147 

(64 to 609) 

Ruan Sha 1 

(0.6 to 13) 

5 

(1 to 14) 

5 

(2 to 61) 

Chun Chi 175 

(42 to 1,770) 

168 

(50 to 1,037) 

177 

(89 to 2,629) 

Gu Pian 22  

(8 to 116) 

34 

(18 to 139) 

55 

(30 to 332) 

Wu Gu 65 

(23 to 505) 

54 

(24 to 145) 

311 

(124 to 2,219) 

Sha Qing 35 

(19 to 134) 

48 

(23 to 131) 

103 

(56 to 196) 

Liu Qiu 24 

(10 to 142) 

74 

(36 to 244) 

72 

(31 to 839) 
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In many cases the Bayesian posterior probability distributions overlap the deterministic 

estimates.  However, in other cases the two types of estimates diverge by nearly an order 

of magnitude.  Divergent estimates such as those for Bai Qing and Sha Qing caudal fins 

can be traced back to Bayesian posterior traded weight estimates whose probability 

intervals do not overlap the deterministic estimates (Figure 2.16).  The divergent 

estimates for Wu Gu caudals illustrate another reason for the difference, as they are likely 

to arise from highly varying single fin weights.  Even when the Bayesian posterior 

probability intervals overlap, there is sometimes a considerable difference between the 

Bayesian posterior median and the deterministic calculation.  This is often the case for the 

highly variable caudal-based conversions and for Ya Jian fins.   

 

The number of sharks represented for each fin position, over all of the eleven shark types, 

was tallied stochastically.  In addition, a value for the combination of the three fin 

positions was obtained by stochastically summing the dorsal, pectoral and caudal tallies, 

adding them together and dividing by three (Table 2.15).   

Table 2.15  Minimum estimates of the total number of sharks (in millions) of the eleven studied 

shark types represented in the Hong Kong auction data set per year based on 

Bayesian and deterministic methods.   

Based on Deterministic Median 2.5th 

Percentile 

97.5th Percentile 

Dorsal 1.252 1.925 0.777 10.070 

Pectoral 1.269 1.415 0.862 2.666 

Caudal 1.274 3.542 1.377 19.890 

Combination of all fin 

positions 

1.265 2.608 1.352 7.998 

 

High median estimates for some shark types (mainly Ya Jian) contribute to a higher 

Bayesian value overall when summing by fin position across all shark types.  

Deterministic estimates are, however, contained within the Bayesian posterior probability 
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distribution except for the caudal fin estimates.  The extremely large probability intervals 

in the overall caudal fin estimates are believed to arise from very high variances observed 

in the length-weight relationship.  The different techniques used for cutting caudal fins 

from the shark carcass render caudal fins problematic for this type of analysis.   

 

The relatively wide probability interval observed for dorsal fins is mainly a function of 

the high uncertainty in just one of the shark types, Ya Jian.  In the case of Ya Jian dorsal 

fins, the length-weight relationship appeared different from other fins (Figure 2.20) but 

due to the small number of samples (in this case n=12), effects were estimated based on 

combining Ya Jian dorsals with the most similar other dorsal fins.  Unfortunately, these 

group-based estimates may not have markedly improved the estimates for Ya Jian 

dorsals.  Also, to some extent the uncertainty in estimators for Ya Jian fins is 

compounded by the high volume of shark fin traded in this category (i.e. 18.21% of the 

total auctioned weight).   

 

All of the estimates in the tables and figures above are considered to be minimum 

estimates since there may be individuals of these eleven shark types auctioned under the 

label of ‘Other’ shark type which are not accounted for in this analysis.  Chapter 4 

converts the results obtained from Model C to quantities representing the shark fin market 

as a whole.   

2.5.2 Algorithm and results for estimating whole weight of sharks 

Model C, Part 1 has produced estimates of fin lengths and weights, and the corresponding 

numbers of sharks for each of the 33 shark type – fin position combinations.  The 

objective of Model C, Part 2 is to build on this information to produce estimates of the 

whole shark weight associated with each of the fins, and to tally this to produce an 

estimate of the total biomass of sharks represented for each of the eleven shark types.  
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This exercise facilitates a comparison between the biomass of sharks utilized in the shark 

fin trade and the landed weights reported by shark fisheries (see Chapter 4.)   

 

Model C, Part 2 is based on an algorithm which converts the fin length from Model C, 

Part 1, which is a dried fin length, to a wet fin length (Step 1).  This wet fin length is then 

converted to a whole shark length (Step 2), and subsequently whole shark lengths are 

converted to whole shark weights (Step 3).  Once the weight of single (whole) shark is 

estimated for each shark type – fin position combination, this weight is multiplied by the 

number of sharks estimated for that combination from Model C, Part 1 to produce an 

estimate of the total biomass of sharks represented (Step 4).  The algorithm is illustrated 

schematically in Figure 2.22 and details of model parameters are presented in Table 2.16.  
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Table 2.16  Variables used in Model C Part 2 (estimation of whole weight) and their assigned 

distributions and priors.  ~dgamma(0.001,0.001) is a gamma-distributed random 

variable with scale of 0.001 and shape of 0.001. 

Variable Distribution Mean Precision (1/variance) 

Slope, dry to 

wet 

Intercept, dry 

to wet 

Normal 1 ~dgamma(0.001,0.001) 

Dry fin 

length 

(data from 

Model C, part 

1 and Fong 

(1999)) 

NA NA 

Wet fin 

length 

Logical = (dry fin length x slope dry to wet) 

+ intercept dry to wet 

NA 

Base slope, 

fin to whole 

Base 

intercept, fin 

to whole 

Normal 1 ~dgamma(0.001,0.001) 

Shark effect 

slope 

Shark effect 

intercept 

Normal  0 ~dgamma(0.001,0.001) 

Slope, fin to 

whole 

Intercept, fin 

to whole 

Logical Base slope (or intercept) fin to whole 

+ shark effect slope (or intercept) 

NA 

Whole shark 

length 

Logical = (wet fin length x slope fin to 

whole) + intercept fin to whole 

NA 

Mean whole 

shark weight 

Logical = a x (whole shark length ^ b) NA 

a Data from 

Kohler et al. 

1995 

NA NA 
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Variable Distribution Mean Precision 

(1/variance) 

b Data from 

Kohler et al. 

1995 

NA NA 

Precision for 

whole shark 

weight 

Logical (see text for equation) NA 

n Data from 

Kohler et al. 

1995 

NA NA 

�
2 Logical Variance in whole shark length NA 

R2 Data from 

Kohler et al. 

1995 

NA NA 

Whole weight 

of a single 

shark 

Normal Mean whole shark weight Precision for whole 

shark weight 

Number of 

sharks 

From Model C 

Part 1 

NA NA 

Total whole 

weight 

Logical  = whole weight of a single shark 

times number of sharks 

NA 

 

Despite an extensive literature search, the data available to support conversion from dry fin 

length to wet fin length (Step 1) were extremely limited.  The only identified data set 

derives from Fong (1999) and consists of 8 dorsal, 10 pectoral and 10 caudal fins from the 

blacktip shark (Carcharhinus limbatus).  Fong (1999) measured length along the anterior 

edge of each fin, the same method used in this study.  Although the dataset is based on 

only one species, and one which is not being analysed in this study, the purpose of this 

conversion is merely to account for the change in fin length due to moisture loss during 

drying, and this is not expected to vary considerably across species.  Regardless of the 

species represented, however, a larger number of samples and a broader range of fin sizes 



 

108 

(the Fong (1999) fins represent lengths only between 18.3 and 29 cm) would have been 

desirable.  Such data could not be collected in this study due to a lack of access to wet fins 

in Hong Kong.  Furthermore, rehydration of dried fins, as undertaken by Fong (1999), 

would have required purchase of dozens of fins and would have been prohibitively 

expensive.   

 

Step 1 of Model C, Part 2 again takes the form of a simple linear model, y=mx+b, where y 

is the wet length of the fin, m is the slope of the relationship, x is the dry length of the fin 

and b is the intercept of the relationship.  Each fin position (i.e. dorsal, pectoral and caudal) 

was assigned its own slope and intercept initially and this was tested against models in 

which slopes and intercepts were grouped.  The model with separate parameters for each 

slope and intercept (i.e. six parameters in total) was found to have superior predictive 

power using the posterior p-value diagnostic (Gelman et al. 1995), and thus separate slopes 

and intercepts for each fin position were retained.   

 

Step 2 of the model requires converting between wet fin length and whole shark length.  

Data sets supporting this conversion were also extremely limited despite a worldwide data 

search and examination of shark fin datasets from the Natal Sharks Board in South Africa 

and the National Marine Fisheries Service Laboratory in Hawaii, USA.  Unfortunately for 

this study, both of these existing datasets relate the weight of all fins from a given shark to 

its whole weight and thus cannot inform conversions for individual fins.  Therefore, it was 

necessary to collect shark morphometric data expressly for this purpose and this was 

accomplished at the fishing port of Su’Ao on the eastern coast of Taiwan in June 2001.  A 

total of 124 sharks of 12 species representing 7 of the shark types in this analysis (based on 

results from Chapter 3) were measured for fin length of dorsal, pectoral and lower caudal 

fins (anterior margin) and pre-caudal, fork and total lengths (where possible, as some 

sharks were already partially processed, i.e. heads and/or tails removed).  Ultimately only 
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those records which included fork length measurements as required by the conversion in 

Step 3 (see below) were utilized in this analysis.  Slopes and intercepts were estimated for 

the 7 shark types in the database (Table 2.17), and the remaining 4 shark types were 

assigned the most appropriate slope and intercept based on overall morphology and 

taxonomy.  Ya Jian, Qing Lian, Wu Yang, Bai Qing, Chun Chi, Wu Gu and Liu Qiu shark 

types thus had empirically-derived data, whereas Hai Hu and Sha Qing were estimated by 

the Bai Qing parameters (all Carcharhinids), and Gu Pian were estimated by the Chun Chi 

parameters (all Sphyrnids) (Figure 2.18).  Ruan Sha (believed to be tiger shark) is most 

similar in fin morphology to Bai Qing or Wu Yang, but given the small size of Wu Yang 

individuals sampled in Taiwan, and the relatively large size of tiger sharks, Ruan Sha was 

considered to be better represented by the larger Bai Qing individuals measured in Taiwan.   

Table 2.17  Empirical fin length – fork length relationships for seven species of sharks observed in 

Taiwan.  The sample size is given by n.  Coefficients (a) and exponents (b) given here 

are based on least squares regression using power curves (y = a�xb) fitted to 

untransformed data in centimetres.  Model C generates slopes and intercepts from 

these data transformed by natural logarithm and modelled using a Bayesian linear 

model (y = mx+b), therefore its parameters will differ.  Instances where the correlation 

coefficient (R2) is reported as being equal to 1 reflect the statistical results obtained but 

do not necessarily imply that the relationship is known with perfect certainty.   

 Dorsal Pectoral  Caudal 

 n a b R2 n a b R2 n a b R2 

Blue (Ya Jian) 12 20.17 0.72 0.87 12 3.52 1.03 0.92 12 12.78 0.81 0.76 

Shortfin Mako  

(Qing Lian) 

29 15.50 0.77 0.84 29 8.29 0.86 0.93 29 5.95 0.98 0.88 

Silky 

(Wu Yang) 

10 7.74 0.99 0.86 11 12.54 0.70 0.88 10 10.88 0.83 0.86 

Sandbar  

(Bai Qing) 

3 10.49 0.76 1.00 5 8.35 0.81 0.53 5 5.86 1.05 0.98 

Hammerhead 

(Chun Chi) 

8 4.24 1.06 0.95 8 4.85 1.06 0.99 8 2.08 1.32 1.00 

Threshers  

(Wu Gu) 

7 28.56 0.56 0.83 8 7.66 0.76 0.71 7 9.96 0.94 0.62 

Oceanic Whitetip 

(Liu Qiu) 

6 4.25 1.04 0.12 6 0.41 1.56 0.99 6 5.01 1.04 0.85 
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The Step 2 conversion was also based on a linear model of the form y=mx+b, with all data 

transformed by natural logarithm, in this case where y is the whole length of the shark, m is 

the slope of the relationship, x is the wet length of the fin and b is the intercept.  Consistent 

with all steps in Model C, each fin position was given a separate base slope and intercept 

term.  However, in this step, an additive shark effect was modelled for each shark type and 

fin position separately and these effects terms were grouped within fin positions (i.e. there 

was no grouping across fin positions) based on probability intervals and posterior p-value 

testing.  Lengths and weights in Step 2 were transformed by natural logarithm in order to 

avoid producing negative weight values in the estimates.   

 

The probability intervals for the individual shark type effects for slope and intercept, and 

the final groupings, are shown in Figure 2.23.  Effects estimation was highly constrained 

by the number of data points in each group.  Consequently, some groups contain shark 

types that are not closely related but cannot support effect estimation on their own due to a 

low sample size.  The seemingly inappropriate grouping of Wu Gu and Liu Qiu pectoral 

fins for slope can be explained by their highly similar effects for intercept and a potentially 

important, but unaccounted for, interaction between slope and intercept in the model.   

 

Examination of posterior p-values for Model C, Part 2 Step 2, using the groups shown in 

Figure 2.23, revealed that 10 of the 230 data points simulated (4.3%) were significantly 

under estimated.  Four of these points were Ya Jian dorsals, three were caudals (Ya Jian, 

Chun Chi and Wu Gu) and three were pectorals (Bai Qing, and two Chun Chi).   
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Figure 2.23  Probability intervals for individual effects for shark type on the slope and intercept for 

estimating whole shark length from wet fin length.  Each line represents the 95% 

probability intervals; the median is represented by a point.  Effects were estimated for 

1 to (n-1) groups but the nth group’s effect was assigned such that the sum of all effects 

would equal 1.   

 

The results from Step 2 are predictions of the whole length of sharks for each shark type.  

These results were checked against recorded length ranges from the literature, where 

available, as shown in Table 2.18.  
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Table 2.18.  Comparison between whole shark lengths (in cm), over all size classes and fin 

positions, generated by Model C, Part 2, Step 2, and maximum and minimum 

recorded shark lengths from the literature (Froese and Pauly (2002)).  The maximum 

from the model is the 97.5th percentile of the highest estimate, and the minimum is 

the 2.5th percentile of the lowest estimate, among the three fin positions for the given 

shark type.   

Shark 

Type 

Minimum 

from 

Model 

Maximum 

from 

Model 

Species or Genus Size at 

Birth 

Maximum 

Length 

Ya Jian 42 335  Prionace glauca (blue) 40 200-383 

Qing 

Lian 

87 435 Isurus oxyrinchus (shortfin 

mako) 

60-70 225-364 

Wu 

Yang 

47 462 Carcharhinus falciformis 

(silky) 

73-87 308-315 

Hai Hu 87 301 Carcharhinus obscurus 

(dusky) 

NA 282-365 

Bai 

Qing 

74 295 Carcharhinus plumbeus 

(sandbar) 

NA 154-300 

Ruan 

Sha 

65 312 Galeocerdo cuvier (tiger) 51-104 430-469 

Chun 

Chi 

51 312 Sphyrna spp. (except S. 

mokarran) (hammerheads) 

43-55 160-350 

Gu Pian 77 393 Sphyrna mokarran (great 

hammerhead) 

56-70 161-348 

Wu Gu 45 370 Alopias spp. (threshers) NA 188-276 

Sha 

Qing 

95 317 Carcharhinus leucas (bull) NA 221-320 

Liu Qiu 43 289 Carcharhinus longimanus 

(oceanic whitetip) 

60-65 270 

 

Most model-generated maximum lengths (taken as the 97.5th percentile across all fin 

positions and size classes), were within the range of lengths observed in nature.  

Exceptions included Qing Lian, Wu Yang, Gu Pian, Wu Gu and Liu Qiu where the 

maximum values generated by the model all derived from dorsal fin estimates which 
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showed the highest coefficients of variation (among the three fin positions) in ten of the 

eleven shark types.  If these high dorsal-based estimates are excluded, all maximum 

pectoral- and caudal-based estimates fall well within the range of observed lengths in 

nature except for an 11 cm exceedance for Wu Gu.  Comparisons between minimum 

lengths are arguably less of a concern since the shark fin trade is known to utilize fins 

from unborn sharks, thus sharks smaller than the size at birth may indeed be represented 

in the trade.  At the low end of the range, Wu Yang and Liu Qiu minimum sizes were 

lower than the length at birth from the literature.  Both of these lengths derived from 

individual caudal fin estimators which showed coefficients of variation nearly as high as, 

or higher, than the dorsal fin estimates.  Where possible, groups were adjusted in an 

attempt to improve the estimates, but the results shown here represent the best and final 

version of the model.   

 

Conversion factors for translating the length of a dried fin to the whole length of the shark 

producing that fin are given in Appendix 2.  These factors were obtained by fixing Model 

C to a single size class for each of six model runs.  The results of this analysis revealed 

that due to high variability in the caudal fin estimators, caudal fin size class 1 in some 

iterations produced anomalous length estimates which prevented the model from 

functioning properly.  For this reason, size class 1 caudal-based conversion factors could 

not be produced.  Biomass estimates based on caudal fins are thus known to be under 

predicted, subject to the proportion of size class 1 fins (see Figure 2.17), and treated with 

caution.   

 

Overall, the results for whole shark length suggest that dorsal-based estimates may be 

slightly over predicting and caudal-based estimates may be slightly under predicting, 

especially at the edges of the parameter probability distributions.  Nevertheless, the 
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results provide a reasonably sound basis for estimating whole shark lengths and for 

biomass calculations in the next step of the algorithm.   

 

Model C, Part 2, Step 3 converts each estimated whole shark length into an associated 

weight using length-weight relationships from the literature.  To avoid parameter bias due 

to varying sampling methodology, all relationships were taken from Kohler et al. (1995) 

which measured and weighed 5,065 sharks from the western North Atlantic.  The 

relationship was given as  

bFLaW ×=         (Eq. 2.8) 

where  

W is the weight in kg,  

FL is the fork length in cm, and  

a and b are dimensionless parameters,  

but this was converted to the linear form:  

( )FLbaW lnln ×+=        (Eq. 2.9) 

for this application.  The linear form was convenient as the shark whole length data 

(based on fork length measurements) output from the model was already in log space.  

However, the most important reason for using the linear form was that since the only 

indication of the variance of the relationship in Kohler et al. (1995) was given by the 

square of the correlation coefficient (r2), it was necessary to use properties of the linear 

regression model to estimate the variance of weight given length.  Starting with the 

standard error in the dependent variable, Y, based on a given regression model and value 

of X: 
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the equation was reformulated as  
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where  

b is the slope parameter (given), 

r2 is the square of the correlation coefficient (given),  

n is the number of samples (given), 

x is the shark length in a given observation (or in this case, model iteration), 

X  is the mean of the observed shark lengths, and 

� 2 is the variance in the shark lengths. 

 

The latter three parameters were estimated within the model in Step 2 for each shark type 

– fin position combination.  As the model produced estimates of whole shark length, x, 

these were stored and used to calculate a mean, X  and a variance, � 2.  An alternative 

approach of using the mean fork length for each shark type from Kohler et al. (1995) and 

applying maximum likelihood methods to estimate the variance from the Kohler et al. 

(1995) minimum and maximum length sharks was considered but not utilized in the 

model as it was believed use of these extreme values would result in an inappropriately 

high variance and hence an overly extended range of resulting shark weights.  Therefore, 

estimates of shark length from the model itself were used as the basis for x, X  and � 2.   

 

Kohler et al. (1995) provide length-weight relationships for all but two of the eleven 

shark types analysed in this study.  Chun Chi (believed to be species of hammerhead) 

length-weight relationships were based on the scalloped hammerhead (Sphyrna lewini) as 

were Gu Pian (believed to be great hammerhead).  Wu Gu (believed to be species of 

thresher) could have been based on either the bigeye thresher (Alopias superciliosus) or 

the common thresher (Alopias vulpinus), but the bigeye thresher data was selected as it is 
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believed to be more abundant worldwide (IUCN 2002, Compagno 2001).  In order to 

assign the most relevant parameters from Kohler et al. (1995) to the two shark types not 

covered by the study, Sha Qing (believed to be bull shark), and Liu Qiu (believed to be 

oceanic whitetip shark), a range of values for the parameters a and b of the length-weight 

relationship for bull and oceanic whitetip sharks were examined in Fishbase (Froese and 

Pauly (2002)) and the most similar parameters from Kohler et al. (1995) were selected.  

On this basis Sha Qing was estimated using the silky shark (Carcharhinus falciformis) 

parameters, and Liu Qiu was estimated using the dusky shark (Carcharhinus obscurus) 

parameters.   

 

The calculations for Step 3 were implemented within the model in a deterministic manner 

to obtain a mean whole shark weight and variance for each shark type – fin position 

combination (Figure 2.22).  These two variables were then used as the parameters in a 

normal distribution, with an uninformative prior on variance, to generate estimates of 

whole shark weight.  The results of estimated shark weights were then compared to 

observed shark weights from the literature (Table 2.19).  
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Table 2.19  Comparison between whole shark weights (in kg) generated by Model C, Part 2, Step 

3 and recorded shark lengths from the literature (Froese and Pauly (2002)).  No 

minimum weights or weight at birth data were available.  The maximum from the 

model is the 97.5th percentile of the highest estimate, and the minimum is the 2.5th 

percentile of the lowest estimate, among the six size classes and three fin positions 

for the given shark type.   

Shark Type Minimum 

from Model 

Maximum 

from 

Model 

Species or Genus Maximum 

Weight 

Ya Jian 1 258 Prionace glauca (blue) 206 

Qing Lian 6 1012 Isurus oxyrinchus (shortfin mako) 506 

Wu Yang 1 975 Carcharhinus falciformis (silky) 346 

Hai Hu 8 253 Carcharhinus obscurus (dusky) 347 

Bai Qing 5 301 Carcharhinus plumbeus (sandbar) 118 

Ruan Sha 2 351 Galeocerdo cuvier (tiger) 807 

Chun Chi 1 356 Sphyrna spp. (except S. mokarran) 

(hammerheads) 

400 

Gu Pian 5 711 Sphyrna mokarran (great 

hammerhead) 

450 

Wu Gu 1 798 Alopias spp. (threshers) 364 

Sha Qing 9 319 Carcharhinus leucas (bull) 317 

Liu Qiu 1 233 Carcharhinus longimanus (oceanic 

whitetip) 

167 

 

As in Step 2, all problematic weights prompted a retrospective examination of all Model 

C parameters for that shark type – fin position combination and parameter adjustments 

were implemented if the estimation could be improved.  Since these biomass estimates 

are based primarily on the length estimates presented above, the same patterns in the 

results are evident.  In some cases, outliers are even more extreme due to the additional 

variance incorporated in the biomass calculation.  Many of the estimated shark weights in 

Table 2.19 exceed the maximum values from the literature, and some are up to 2 times 

higher.  However, as shown in Appendix 2, which presents conversion factors for each 

shark type, fin position and size class combination, the enormous biomass estimates 
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shown in Table 2.19 occur only for size class 6 dorsal-based estimates which have a high 

variance.  Most biomass estimates for pectoral- and caudal- based estimates fall within 

the observed range.  Again echoing a pattern in the whole shark length results, a bias 

toward under prediction in the caudal-based estimates is apparent.   

 

The final step in Model C, Part 2 was Step 4 which simply multiplied the biomass 

estimate for a single shark from each shark type – fin position combination by the number 

of sharks estimated in Model C, Part 1.  This product, when estimated under Monte Carlo 

iteration should converge to a stable distribution of the total shark biomass in each 

combination represented each year in the Hong Kong shark fin auctions (Table 2.20.)  In 

some cases, a high degree of variability between estimates based on different fin positions 

is apparent and derives from the compounding of parameter uncertainty through 

numerous steps in the algorithm.  The greater number of conversion steps necessary to 

produce the biomass estimates, as opposed to the estimates of number of sharks, 

introduces considerably more uncertainty into the results.  For reasons stated above, the 

caudal-based biomass results are believed to be problematic due to under estimation of 

shark weights and thus under estimation of total biomass for some shark types, 

particularly at small fin sizes.   

 

These stochastic estimates of biomass per year represented in the Hong Kong auctions are 

contrasted with a deterministic estimate for each shark type – fin position combination in 

Figure 2.24.  The deterministic estimates were derived from multiplying each fin size 

class midpoint (Table 2.9) by a maximum likelihood estimator of the slope and intercept 

for dry to wet fin length based on data in Fong (1999) and a maximum likelihood 

estimator of slope and intercept for fin length to shark length based on the Taiwan dataset 

(Table 2.17).  The resulting shark lengths for each fin size class for each combination 
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Table 2.20  Medians and 95% probability intervals (in parentheses) for total shark biomass (mt) 

per year for the eleven studied shark type categories by shark type and fin position.   

Trader’s Market 

Category 

Dorsal Fins 

 

Pectoral Fins Caudal Fins 

Ya Jian 33,133 

(7,180 to 159,533) 

23,687 

 (7,600 to 76,267) 

19,067 

(4,641 to 67,600) 

Qing Lian 4,991 

(1,031 to 25,507) 

4,795 

(1,099 to 21,420) 

2,232 

(666 to 7,853) 

Wu Yang 6,807 

(1,482 to 30,560) 

4,929 

(1,716 to 14,527) 

3,853 

(1,278 to 11,760) 

Hai Hu 933 

(204 to 3,840) 

1,790 

(645 to 4,846) 

2,071 

(737 to 6,305) 

Bai Qing 2,381 

(498 to 11,193) 

3,113 

(1,048 to 9,287) 

4,717 

(1,535 to 15,213) 

Ruan Sha 78 

(13 to 459) 

152 

(43 to 523) 

199 

(52 to 845) 

Chun Chi 5,447 

(1,131 to 29,513) 

5,692 

(1,375 to 24,780) 

6,673 

(2,017 to 21,567) 

Gu Pian 1,998 

(398 to 11,480) 

2,588 

(601 to 11,413) 

2,484 

(783 to 7,980) 

Wu Gu 7,613 

(1,775 to 34,580) 

2,461 

(376 to 15,353) 

5,491 

(1,548 to 17,053) 

Sha Qing 2,111 

(443 to 9,653) 

2,455 

(853 to 7,207) 

4,565 

(1,577 to 13,880) 

Liu Qiu 1,123 

(263 to 4,532) 

1,997 

(385 to 9,613) 

1,380 

(477 to 4,177) 
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were converted to shark weights using equations in Kohler et al. (1995) and multiplied by 

the deterministic estimate of number of sharks presented in the previous section.   

 

Similar to the pattern observed in the comparison based on number of sharks, the 

Bayesian posterior medians are often higher than the deterministic estimates, and in a 

greater number of cases (10 of 33) the Bayesian posterior probability interval does not 

overlap with the deterministic estimate.  These discrepancies are likely to arise from 

differences in traded fin weights, for example in the case of Bai Qing and Sha Qing 

caudals, or due to the conversion factors themselves in one or more of the algorithm 

steps.  The probability intervals are of generally similar widths across fin positions and 

shark types, although the largest discrepancies between Bayesian and deterministic 

estimates occur in caudal fins.   

 

Estimates of total biomass in the eleven studied shark types summed over all shark types 

for each fin position are presented and contrasted with deterministic estimates of the same 

quantities in Table 2.21.  Similar to the results for number, the Bayesian posterior median 

estimates are larger than the deterministic estimates, but in this case all of the Bayesian 

posterior probability intervals contain the deterministic estimates.  The higher Bayesian 

median estimates may be due to use of the log normal distribution, which is characterized 

by a long tail of high values, at several steps in Model C.  The values based on a 

combination of all fin types are biased upward by the high biomass estimates for dorsal 

fins, which in turn originate from high estimates of individual shark weights based on 

dorsal fins (as discussed above in connection with Table 2.19).  Caudal-based estimates 

for the median and the 2.5th percentile are lower than the other two fin positions due to 

the under prediction bias identified above.   
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Table 2.21  Composite estimates of biomass (mt) represented per year in the Hong Kong auction 

data for all of the eleven studied shark types combined.   

Based on Deterministic Median 2.5th  

Percentile 

97.5th 

Percentile 

Dorsal 38,243 75,590 21,810 271,100 

Pectoral 30,602 61,950 25,690 153,000 

Caudal 35,518 56,050 18,820 167,900 

All fin positions 34,788 69,680 33,100 158,400 

 

2.6 Conclusions 

2.6.1 Summary of Main Findings and Model Performance 

This chapter has described the formulation of a step-wise Bayesian model which uses 

available trade data from Hong Kong shark fin auctions to fill missing records, generate a 

complete data set and then convert traded fin weights to estimates of shark numbers and 

biomass.  The algorithm for the data imputation (Models A and B) produced estimates of 

total traded weight for each of 11 shark types, by fin position (dorsal, pectoral, caudal or 

other/unspecified).  These traded fin weight estimates reveal that 52 to 56% of the shark 

fins auctioned during the study period of October 1999 and March 2001 were not 

described by shark type, and thus there is no way of identifying which sharks were 

utilized to produce these fins.  The largest portion of identified traded fins, 17 to 20%, 

were identified as Ya Jian (believed to be blue shark, Prionace glauca) while all other 

identified shark types comprised 5% or less of the total traded weight.  Of these less 

common shark types, the most abundant were Chun Chi (believed to be hammerhead, 

Sphyrna spp.) and Wu Yang (believed to be silky shark, Carcharhinus falciformis).  The 

overall estimate of auctioned fin weights per year was between 1,108 and 1,247 mt. 
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These multiple imputation models utilized diffuse, normally distributed prior distributions 

and the underlying data were numerous and representative across categories of interest 

(n=7,104), therefore, the model results were strongly driven by the data and were not 

overly sensitive to specification of priors.  Posterior p-values were employed to assess the 

performance of the models against actual data through simulation exercises.  These trials 

suggest that missing data were under predicted across all categories of shark type and fin 

position by approximately 9%.  Given that the data are distributed according to an 

approximate negative binomial distribution, and are thus heavily influenced by outliers in 

the tail of the distribution, this degree of under prediction is considered acceptable, and 

was corrected through scaling before the results were applied in subsequent portions of 

the model.  A comparison between modelled estimates of traded weights and simple 

deterministic calculations showed a high correspondence between estimates for the 

majority of shark type – fin position combinations.  The most erratic estimates were 

obtained for Ya Jian fins, but this is likely to be a function of the large quantity of fins 

auctioned in the Ya Jian category.  Despite discrepancies observed for some 

combinations, an overall correspondence of 1: 0.9968 for the ratio of deterministic to 

Bayesian estimates for the sum of all traded weights was observed.   

 

The subsequent model components (Model C) use several linear models to transform the 

estimates of traded fin weights into shark number and biomass equivalencies.  Median 

estimates for the total number of sharks in the eleven studied shark type categories, were 

formulated separately for dorsal, pectoral and caudal fins, and ranged from 1.4 to 3.5 

million sharks per year with a 95% probability interval of 0.8 to 19.9 million sharks per 

year.  Much of the variability in these estimates is associated with the estimate of Ya Jian 

numbers based on caudal fins which in itself displays a 95% probability interval of 0.2 to 

17 million sharks per year.  The variability in this estimate reflects an overall trend of 

higher variances in caudal fin based estimates, compounded by a relatively higher number 
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of Ya Jian fins in trade.  Deterministic estimates of the total number of sharks represented 

per year in each of the eleven identified market categories lie within the 95% Bayesian 

posterior probability intervals in most cases.  Divergences mainly occurred for caudal 

fins, and sometimes could also be traced back to divergences between the Bayesian and 

deterministic estimates for traded weight (i.e. Model B).  Deterministic estimates for Ya 

Jian dorsals, pectorals and caudals overlapped the Bayesian probability intervals but the 

Bayesian posterior medians were substantially higher for both dorsal and caudal fins 

(980,000 versus 711,000 and 1,638,000 versus 372,000 respectively).  When summed by 

fin position for all sharks, Bayesian estimates were higher than the deterministic estimates 

due to high median estimates for some shark types including Ya Jian.   

 

Estimates of total shark biomass demonstrate a greater lack of coherence between 

deterministic and Bayesian estimates possibly due to compounding of uncertainty over 

several conversion steps.  When biomass is summed by fin position over all eleven 

studied shark types, deterministic estimates lie within the 95% Bayesian probability 

interval.  However, Bayesian medians are approximately 50% higher than the 

deterministic estimates, and the 95% Bayesian probability interval for total biomass per 

year in the eleven categories based on all fin types combined ranges from 33 to 158 mt 

per year, compared to 30 to 38 mt per year for the deterministic estimates.   

 

The Bayesian modelling techniques applied in Model C account for the variance 

associated with several highly uncertain conversion steps.  As in Models A and B, Model 

C parameters were based on uninformative, normally-distributed priors, but in Model C 

the likelihood function derived from generally small data sets sourced from the literature 

or based on empirical observations.  Simulation of actual data was undertaken at each 

step to ensure estimated parameters would result in reasonable values with adequate 

predictive power for the models.  As qualitative fin size class data were converted to fin 
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lengths and weights, and whole shark lengths and weights, the resulting fin weights, shark 

weights and shark lengths were compared to observed values in empirical data or the 

literature and were found to be realistic in most cases.   

 

Problematic estimators were identified for dorsal and caudal fins in some steps.  Caudal 

fins in the shark fin trade are known to have a variable morphology due to differences in 

fin removal techniques and this is likely to contribute to the higher variability in fin 

length-weight relationships.  Over estimation based on dorsal fin estimators was apparent 

in the conversions to whole length and biomass, producing unrealistic estimates for 

larger-sized fins.  Further work is required to improve the conversion factors for caudal 

and dorsal fins, and pending such work, estimates based on these fin types should be 

treated with caution.   

 

2.6.2 Applicability of Methods to Other Traded Wildlife 

The benefits of this type of Bayesian data filling and modelling approach derive from its 

hierarchical model structure and its explicit incorporation of uncertainty.  When data are 

lacking, the approach draws predictive power from the hierarchical data structure 

allowing well-characterized categories to inform predictions of under represented 

categories.  Using a statistical distribution, rather than a point estimate, in each step of the 

algorithm enables this approach to report results with associated probability intervals.  

Although some estimates are highly uncertain, and may be disconcerting to audiences 

accustomed to falsely precise point estimates, the ability to quantify probability intervals 

is considered a major strength of this type of methodology.  Probability intervals should 

ultimately facilitate policy decisions, especially where it is desirable to communicate not 

only the best estimate of resource utilization, but also the lower and upper levels at which 

it may be occurring.   
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The specific algorithm developed for this study has provided insight into the current 

characteristics of the Hong Kong shark fin trade and can serve as basis for monitoring this 

trade in the future should new auction records become available.  The algorithm can also 

be modified to suit other types of data sets on traded wildlife which contain weights or 

volumes, some indication of product size, and for which reasonable conversion factors 

exist or can be estimated.  As this approach incorporates measures of uncertainty, it is not 

necessary to postpone modelling until robust data sets have been gathered and validated.  

Instead, as long as there is sufficient confidence in preliminary estimates based on limited 

data or even expert judgement, models can be used to generate meaningful estimates 

which can be further refined as better data sets become available.   

 

Species information, or its proxy such as shark type in this analysis, can be incorporated 

in the models if available, but this is not necessary as long as the intended conversion 

factors can be reasonably assumed to apply to all products in the data set (e.g. uncarved 

elephant ivory where tusk dimensions would be expected to be similar regardless of the 

source population (Milner-Gulland and Mace 1991)).  While species information is thus 

not essential for the algorithm, in applications where only some species are of interest, for 

example the caviar trade (Birstein et al. 1998), the whale meat market (Baker et al. 2000), 

or hunting of certain species of wild pigs (Milner-Gulland and Clayton 2002), the results 

will not be useful for decision-making unless they can be taxonomically partitioned.  This 

type of information may be available in trade records in the form of market names, 

although special studies may be necessary to map trade names to their taxonomic matches 

(see Chapter 3).  If products are wholly undifferentiated (e.g. sold under a common trade 

name), it may be possible to identify distinguishing characters and perform representative 

sampling of products to estimate species composition.   
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Models such as those described in this chapter allow maximal use of trade data sets in 

understanding the potential extraction rates for traded wildlife, and represent an 

improvement over past practices involving tallying existing data and extrapolating using 

means.  Nevertheless, it is important to acknowledge that in many potential applications, 

the feasibility of using models such as these to better understand wildlife exploitation 

rates will be constrained more by the ability to obtain meaningful data than by the 

limitations associated with any particular analytical technique.  Therefore, methodologies 

for data gathering and data analysis must be given equal attention as the strengths of one 

cannot fully compensate for inherent weaknesses in the other.   

 

2.6.3 Use of Hong Kong Auction Data in Estimating the Global Trade 

This analysis has provided estimates of the number and biomass of sharks represented for 

eleven specific shark type categories in the Hong Kong auction data.  The following 

chapter presents the results of a molecular genetic study mapping these eleven categories 

to specific shark taxa, and adjusts the estimates in the eleven categories so that they 

represent particular species or genera of sharks.  However, these adjusted estimates still 

represent only a fraction of the global shark fin trade and must be extrapolated from the 

auction data set to worldwide totals.  Datasets and assumptions necessary to support these 

extrapolations are described in Chapter 4.  In addition to presenting extrapolated figures, 

Chapter 4 compares these figures to global shark catch statistics, and to an estimate of the 

global maximum sustainable yield for blue shark.   


